首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Real-World Sensor Network for Long-Term Volcano Monitoring: Design and Findings
【24h】

Real-World Sensor Network for Long-Term Volcano Monitoring: Design and Findings

机译:用于长期火山监测的真实传感器网络:设计和发现

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents the design, deployment, and evaluation of a real-world sensor network system in an active volcanoȁ4;Mount St. Helens. In volcano monitoring, the maintenance is extremely hard and system robustness is one of the biggest concerns. However, most system research to date has focused more on performance improvement and less on system robustness. In our system design, to address this challenge, automatic fault detection and recovery mechanisms were designed to autonomously roll the system back to the initial state if exceptions occur. To enable remote management, we designed a configurable sensing and flexible remote command and control mechanism with the support of a reliable dissemination protocol. To maximize data quality, we designed event detection algorithms to identify volcanic events and prioritize the data, and then deliver higher priority data with higher delivery ratio with an adaptive data transmission protocol. Also, a light-weight adaptive linear predictive compression algorithm and localized TDMA MAC protocol were designed to improve network throughput. With these techniques and other improvements on intelligence and robustness based on a previous trial deployment, we air-dropped 13 stations into the crater and around the flanks of Mount St. Helens in July 2009. During the deployment, the nodes autonomously discovered each other even in-the-sky and formed a smart mesh network for data delivery immediately. We conducted rigorous system evaluations and discovered many interesting findings on data quality, radio connectivity, network performance, as well as the influence of environmental factors.
机译:本文介绍了在活火山ȁ4;圣海伦斯火山中的真实世界的传感器网络系统的设计,部署和评估。在火山监测中,维护非常困难,系统的坚固性是最大的问题之一。但是,迄今为止,大多数系统研究都将重点更多地放在性能改进上,而很少关注系统的鲁棒性。在我们的系统设计中,为了应对这一挑战,设计了自动故障检测和恢复机制,以在发生异常时自动将系统回滚到初始状态。为了实现远程管理,我们在可靠的分发协议的支持下设计了可配置的传感和灵活的远程命令与控制机制。为了最大程度地提高数据质量,我们设计了事件检测算法来识别火山事件并确定数据的优先级,然后使用自适应数据传输协议以更高的传输率交付优先级更高的数据。此外,还设计了一种轻量自适应线性预测压缩算法和局部TDMA MAC协议来提高网络吞吐量。借助这些技术以及基于先前的试验部署在智能性和鲁棒性方面的其他改进,我们于2009年7月将13个站点空投到了圣海伦火山的火山口和两侧。在部署期间,这些节点甚至自动发现了彼此并建立了一个智能网状网络,可以立即进行数据传输。我们进行了严格的系统评估,发现了关于数据质量,无线电连接,网络性能以及环境因素影响的许多有趣发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号