首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication
【24h】

High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication

机译:并行共享内存稀疏矩阵矢量乘法的高级策略

获取原文
获取原文并翻译 | 示例

摘要

The sparse matrix-vector multiplication is an important computational kernel, but is hard to efficiently execute even in the sequential case. The problems--namely low arithmetic intensity, inefficient cache use, and limited memory bandwidth--are magnified as the core count on shared-memory parallel architectures increases. Existing techniques are discussed in detail, and categorized chiefly based on their distribution types. Based on this, new parallelization techniques are proposed. The theoretical scalability and memory usage of the various strategies are analyzed, and experiments on multiple NUMA architectures confirm the validity of the results. One of the newly proposed methods attains the best average result in experiments on a large set of matrices. In one of the experiments it obtains a parallel efficiency of 90 percent, while on average it performs close to 60 percent.
机译:稀疏矩阵矢量乘法是重要的计算内核,但即使在顺序情况下也难以有效执行。随着共享内存并行体系结构的核心数量增加,这些问题(即低算术强度,低效的缓存使用和有限的内存带宽)被放大了。现有技术进行了详细讨论,并主要根据其分布类型进行分类。基于此,提出了新的并行化技术。分析了各种策略的理论可扩展性和内存使用情况,并且在多种NUMA架构上进行的实验证实了结果的有效性。新提出的方法之一在大量矩阵上的实验中获得了最佳的平均结果。在其中一项实验中,它的并行效率为90%,而平均效率接近60%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号