首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Locality-Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Processors
【24h】

Locality-Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Processors

机译:多核处理器上的局部性并行稀疏矩阵向量和矩阵转置向量乘法

获取原文
获取原文并翻译 | 示例

摘要

Sparse matrix-vector and matrix-transpose-vector multiplication () repeatedly performed as and (or ) for the same sparse matrix is a kernel operation widely used in various iterative solvers. One important optimization for serial is reusing -matrix nonzeros, which halves the memory bandwidth requirement. However, thread-level parallelization of that reuses -matrix nonzeros necessitates concurrent writes to the same output-vector entries. These concurrent writes can be handled in two ways: via atomic updates or thread-local temporary output vectors that will undergo a reduction operation, both of which are not efficient or scalable on processors with many cores and complicated cache-coherency protocols. In this work, we identify five quality criteria for efficient and scalable thread-level parallelization of that utilizes one-dimensional (1D) matrix partitioning. We also propose two locality-aware 1D partitioning methods, which achieve reusing -matrix nonzeros and intermediate -vector entries; exploiting locality in accessing -, -, and -vector entries; and reducing the number of concurrent writes to the same output-vector entries. These two methods utilize rowwise and columnwise singly bordered block-diagonal (SB) forms of
机译:对于相同的稀疏矩阵重复执行和(或)重复执行的稀疏矩阵向量和矩阵转置向量乘法()是在各种迭代求解器中广泛使用的内核操作。串行的一项重要优化是重用-matrix非零值,这使内存带宽需求减半。但是,该线程级别的并行化会重用-matrix非零值,因此必须同时写入相同的输出矢量条目。这些并发写入可以通过两种方式处理:通过原子更新或将进行归约运算的线程本地临时输出矢量,这两种方法在具有许多内核和复杂高速缓存一致性协议的处理器上均不高效或不可扩展。在这项工作中,我们确定了使用一维(1D)矩阵分区进行高效和可扩展的线程级并行化的五个质量标准。我们还提出了两种可感知位置的1D分区方法,该方法可实现对矩阵非零和中间矢量条目的重用。利用局部性来访问-,-和-vector条目;并减少对相同输出矢量条目的并发写入次数。这两种方法利用行和列的单边界块对角线(SB)形式

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号