首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Spatiotemporal Graph and Hypergraph Partitioning Models for Sparse Matrix-Vector Multiplication on Many-Core Architectures
【24h】

Spatiotemporal Graph and Hypergraph Partitioning Models for Sparse Matrix-Vector Multiplication on Many-Core Architectures

机译:多核架构上稀疏矩阵-向量乘法的时空图和超图划分模型

获取原文
获取原文并翻译 | 示例

摘要

There exist graph/hypergraph partitioning-based row/column reordering methods for encoding either spatial or temporal locality for sparse matrix-vector multiplication (SpMV) operations. Spatial and temporal hypergraph models in these methods are extended to encapsulate both spatial and temporal localities based on cut/uncut net categorization obtained from vertex partitioning. These extensions of spatial and temporal hypergraph models encode the spatial locality primarily and the temporal locality secondarily, and vice-versa, respectively. However, the literature lacks models that simultaneously encode both spatial and temporal localities utilizing only vertex partitioning for further improving the performance of SpMV on shared-memory architectures. In order to fill this gap, we propose a novel spatiotemporal hypergraph model that leads to a one-phase spatiotemporal reordering method which encodes both types of locality simultaneously. We also propose a framework for spatiotemporal methods which encodes both types of locality in two dependent phases and two separate phases. The validity of the proposed spatiotemporal models and methods are tested on a wide range of sparse matrices and the experiments are performed on both a 60-core Intel Xeon Phi processor and a Xeon processor. Results show the validity of the methods via almost doubling the Gflop/s performance through enhancing data locality in parallel SpMV operations.
机译:存在基于图/超图分区的行/列重排序方法,该方法用于对稀疏矩阵矢量乘法(SpMV)操作的空间或时间局部性进行编码。这些方法中的空间和时间超图模型被扩展为基于从顶点分区获得的剪切/未剪切网络分类来封装空间和时间局部性。空间和时间超图模型的这些扩展分别对空间局部性进行编码,其次对时间局部性进行编码,反之亦然。但是,文献缺乏仅利用顶点分区同时编码空间和时间局部性的模型,以进一步提高SpMV在共享内存体系结构上的性能。为了填补这一空白,我们提出了一种新颖的时空超图模型,该模型导致了一种同时编码两种类型的局部性的单相时空重排序方法。我们还为时空方法提出了一个框架,该框架在两个从属阶段和两个独立阶段对两种类型的局部性进行编码。在广泛的稀疏矩阵上测试了所提出的时空模型和方法的有效性,并在60核Intel Xeon Phi处理器和Xeon处理器上进行了实验。结果表明,通过增强并行SpMV操作中的数据局部性,Gflops的性能几乎提高了一倍,该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号