首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >A Heuristic Clustering-Based Task Deployment Approach for Load Balancing Using Bayes Theorem in Cloud Environment
【24h】

A Heuristic Clustering-Based Task Deployment Approach for Load Balancing Using Bayes Theorem in Cloud Environment

机译:基于启发式聚类的任务部署方法,用于在云环境中使用贝叶斯定理进行负载平衡

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the current problems that most physical hosts in the cloud data center are so overloaded that it makes the whole cloud data center’ load imbalanced and that existing load balancing approaches have relatively high complexity, this paper has focused on the selection problem of physical hosts for deploying requested tasks and proposed a novel heuristic approach called Load Balancing based on Bayes and Clustering (LB-BC). Most previous works, generally, utilize a series of algorithms through optimizing the candidate target hosts within an algorithm cycle and then picking out the optimal target hosts to achieve the immediate load balancing effect. However, the immediate effect doesn’t guarantee high execution efficiency for the next task although it has abilities in achieving high resource utilization. Based on this argument, LB-BC introduces the concept of achieving the overall load balancing in a long-term process in contrast to the immediate load balancing approaches in the current literature. LB-BC makes a limited constraint about all physical hosts aiming to achieve a task deployment approach with global search capability in terms of the performance function of computing resource. The Bayes theorem is combined with the clustering process to obtain the optimal clustering set of physical hosts finally. Simulation results show that compared with the existing works, the proposed approach has reduced the failure number of task deployment events obviously, improved the throughput, and optimized the external services performance of cloud data centers.
机译:针对当前云数据中心中大多数物理主机超负荷以致整个云数据中心的负载不平衡以及现有负载均衡方法具有较高复杂性的问题,本文着重研究了物理主机的选择问题为部署请求的任务,并提出了一种新颖的启发式方法,称为基于贝叶斯和群集的负载平衡(LB-BC)。通常,大多数以前的工作都是通过在算法周期内优化候选目标主机,然后挑选出最佳目标主机来实现立即的负载平衡效果,从而利用一系列算法。但是,立竿见影的效果虽然可以实现较高的资源利用率,但不能保证下一个任务的执行效率高。基于此论点,与当前文献中的立即负载平衡方法相比,LB-BC引入了在长期过程中实现总体负载平衡的概念。 LB-BC对旨在实现具有全局搜索功能的任务部署方法的所有物理主机,在计算资源的性能函数方面都施加了有限的约束。贝叶斯定理与聚类过程相结合,最终获得物理主机的最佳聚类集。仿真结果表明,与现有工作相比,该方法明显减少了任务部署事件的失败次数,提高了吞吐量,并优化了云数据中心的外部服务性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号