首页> 外文期刊>Journal of network and computer applications >Meta heuristic-based task deployment mechanism for load balancing in IaaS cloud
【24h】

Meta heuristic-based task deployment mechanism for load balancing in IaaS cloud

机译:基于元启发式的任务部署机制,用于IaaS云中的负载平衡

获取原文
获取原文并翻译 | 示例

摘要

An Infrastructure-as-a-service (IaaS) cloud is a new paradigm which offers computing and storage services in form of virtual machines to the cloud users. Due to increasing demand and diversity of the applications, most of the servers are become overloaded or imbalanced and affects the performance of the cloud system. Most of the existing strategies have developed a series of algorithms to pick out the optimal target server to achieve the immediate load balancing. However, it is proved in the literature that immediate load balancing does not meet the high execution efficiency and resource utilization of the servers. In this paper, we propose a new load balancing mechanism for a long-term process referred as LB-RC (load balancing resource clustering). The meta-heuristic Bat algorithm is applied to obtain optimal resource clustering and their cluster centers for faster convergence. We also propose a new dynamic task assignment policy to achieve the minimum makespan and execution cost within the given constraints. The proposed algorithm is tested and compared with the existing algorithms over various synthetic datasets and performance matrices to prove its superiority.
机译:基础架构即服务(IaaS)云是一种新的范例,它以虚拟机的形式向云用户提供计算和存储服务。由于需求的增加和应用程序的多样性,大多数服务器变得过载或不平衡,并影响了云系统的性能。现有的大多数策略都开发了一系列算法,以选择最佳目标服务器来实现即时负载平衡。但是,已有文献证明即时负载平衡不能满足服务器的高执行效率和资源利用率。在本文中,我们为长期过程提出了一种新的负载平衡机制,称为LB-RC(负载平衡资源聚类)。应用元启发式Bat算法来获得最佳资源聚类及其聚类中心,以实现更快的收敛。我们还提出了一种新的动态任务分配策略,以在给定的约束条件下实现最小的制造时间和执行成本。对提出的算法进行了测试,并与现有算法在各种综合数据集和性能矩阵上进行了比较,以证明其优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号