首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >High-Performance and Dynamically Updatable Packet Classification Engine on FPGA
【24h】

High-Performance and Dynamically Updatable Packet Classification Engine on FPGA

机译:FPGA上的高性能和动态可更新数据包分类引擎

获取原文
获取原文并翻译 | 示例

摘要

High-performance and dynamically updatable hardware architectures for multi-field packet classification have regained much interest in the research community. For example, software defined networking requires 15 fields of the packets to be checked against a predefined rule set. Many algorithmic solutions for packet classification have been studied over the past decade. FPGA-based packet classification engines can achieve very high throughput; however, supporting dynamic updates is yet challenging. In this paper, we present a two-dimensional pipelined architecture for packet classification on FPGA; this architecture achieves high throughput while supporting dynamic updates. In this architecture, modular Processing Elements (PEs) are arranged in a two-dimensional array. Each PE accesses its designated memory locally, and supports prefix match and exact match efficiently. The entire array is both horizontally and vertically pipelined. We exploit striding, clustering, dual-port memory, and power gating techniques to further improve the performance of our architecture. The total memory is proportional to the rule set size. Our architecture sustains high clock rate even if we scale up (1) the length of each packet header, or/and (2) the number of rules in the rule set. The performance of the entire architecture does not depend on rule set features such as the number of unique values in each field. The PEs are also self-reconfigurable; they support dynamic updates of the rule set during run-time with very little throughput degradation. Experimental results show that, for a 1 K 15-tuple rule set, a state-of-the-art FPGA can sustain a throughput of 650 Million Packets Per Second (MPPS) with 1 million updates/second. Compared to TCAM, our architecture demonstrates at least four-fold energy efficiency while achieving two-fold throughput.
机译:用于多字段数据包分类的高性能且可动态更新的硬件体系结构已引起研究界的极大兴趣。例如,软件定义的联网需要根据预定义的规则集检查数据包的15个字段。在过去的十年中,已经研究了许多用于分组分类的算法解决方案。基于FPGA的数据包分类引擎可以实现很高的吞吐量。但是,支持动态更新仍然具有挑战性。在本文中,我们提出了一种二维流水线架构,用于在FPGA上进行分组分类。这种架构在支持动态更新的同时实现了高吞吐量。在这种体系结构中,模块化处理元件(PE)布置在二维阵列中。每个PE在本地访问其指定的内存,并有效地支持前缀匹配和精确匹配。整个阵列都是水平和垂直流水线的。我们利用跨步,群集,双端口内存和电源门控技术进一步提高了我们架构的性能。总内存与规则集大小成正比。即使我们按比例扩大(1)每个数据包头的长度或/和(2)规则集中规则的数量,我们的体系结构仍保持较高的时钟速率。整个体系结构的性能不取决于规则集功能,例如每个字段中唯一值的数量。 PE也可以自行重配置;它们支持在运行时动态更新规则集,而吞吐量下降很少。实验结果表明,对于1 K 15元组规则集,先进的FPGA可以以每秒一百万次更新的速度维持每秒6.5亿个数据包(MPPS)的吞吐量。与TCAM相比,我们的架构显示出至少四倍的能源效率,同时实现了两倍的吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号