首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Optimized Block-Based Algorithms to Label Connected Components on GPUs
【24h】

Optimized Block-Based Algorithms to Label Connected Components on GPUs

机译:优化的基于块的算法来标记GPU上的连接组件

获取原文
获取原文并翻译 | 示例

摘要

Connected Components Labeling (CCL) is a crucial step of several image processing and computer vision pipelines. Many efficient sequential strategies exist, among which one of the most effective is the use of a block-based mask to drastically cut the number of memory accesses. In the last decade, aided by the fast development of Graphics Processing Units (GPUs), a lot of data parallel CCL algorithms have been proposed along with sequential ones. Applications that entirely run in GPU can benefit from parallel implementations of CCL that allow to avoid expensive memory transfers between host and device. In this paper, two new eight-connectivity CCL algorithms are proposed, namely Block-based Union Find (BUF) and Block-based Komura Equivalence (BKE). These algorithms optimize existing GPU solutions introducing a block-based approach. Extensions for three-dimensional datasets are also discussed. In order to produce a fair comparison with previously proposed alternatives, YACCLAB, a public CCL benchmarking framework, has been extended and made suitable for evaluating also GPU algorithms. Moreover, three-dimensional datasets have been added to its collection. Experimental results on real cases and synthetically generated datasets demonstrate the superiority of the new proposals with respect to state-of-the-art, both on 2D and 3D scenarios.
机译:连接组件标签(CCL)是几个图像处理和计算机视觉管道的关键步骤。存在许多有效的顺序策略,其中最有效的策略之一是使用基于块的掩码来大幅减少内存访问的次数。在过去的十年中,随着图形处理单元(GPU)的快速发展,已经提出了许多数据并行CCL算法以及顺序算法。完全在GPU中运行的应用程序可以受益于CCL的并行实现,从而避免了主机与设备之间昂贵的内存传输。本文提出了两种新的八连通性CCL算法,分别是基于块的联合查找(BUF)和基于块的Komura等价(BKE)。这些算法通过引入基于块的方法来优化现有的GPU解决方案。还讨论了三维数据集的扩展。为了与以前提出的替代方案进行公平的比较,YACCLAB(一种公共CCL基准测试框架)已得到扩展,并适用于评估GPU算法。此外,三维数据集已添加到其集合中。在2D和3D场景中,针对真实案例和综合生成的数据集的实验结果证明了新建议相对于最新技术的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号