首页> 外文期刊>IEEE Transactions on Image Processing >Spaghetti Labeling: Directed Acyclic Graphs for Block-Based Connected Components Labeling
【24h】

Spaghetti Labeling: Directed Acyclic Graphs for Block-Based Connected Components Labeling

机译:意大利面标签:用于基于块的连接组件标签的定向非循环图

获取原文
获取原文并翻译 | 示例

摘要

Connected Components Labeling is an essential step of many Image Processing and Computer Vision tasks. Since the first proposal of a labeling algorithm, which dates back to the sixties, many approaches have optimized the computational load needed to label an image. In particular, the use of decision forests and state prediction have recently appeared as valuable strategies to improve performance. However, due to the overhead of the manual construction of prediction states and the size of the resulting machine code, the application of these strategies has been restricted to small masks, thus ignoring the benefit of using a block-based approach. In this paper, we combine a block-based mask with state prediction and code compression: the resulting algorithm is modeled as a Directed Rooted Acyclic Graph with multiple entry points, which is automatically generated without manual intervention. When tested on synthetic and real datasets, in comparison with optimized implementations of state-of-the-art algorithms, the proposed approach shows superior performance, surpassing the results obtained by all compared approaches in all settings.
机译:连接的组件标签是许多图像处理和计算机视觉任务的重要步骤。由于追溯到六十年代的标签算法的第一个提议,许多方法已经优化了标记图像所需的计算负荷。特别是,最近使用决策森林和国家预测的使用是提高性能的有价值的策略。然而,由于预测状态的手动构造的开销和所得到的机器代码的大小,这些策略的应用已经限于小型掩模,从而忽略了使用基于块的方法的益处。在本文中,我们将基于块的掩码与状态预测和代码压缩组合起来:得到的算法被建模为具有多个入口点的指向根的无循环图,在没有手动干预的情况下自动生成。当在合成和实时数据集上测试时,与最先进的算法的优化实现相比,所提出的方法显示出优异的性能,超越所有设置中所有比较方法获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号