首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Optimizing Geo-Distributed Data Analytics with Coordinated Task Scheduling and Routing
【24h】

Optimizing Geo-Distributed Data Analytics with Coordinated Task Scheduling and Routing

机译:通过协调任务调度和路由优化地理分布数据分析

获取原文
获取原文并翻译 | 示例

摘要

Recent trends show that cloud computing is growing to span more and more globally distributed datacenters. For geo-distributed datacenters, there is an increasingly need for scheduling algorithms to place tasks across datacenters, by jointly considering WAN traffic and computation. This scheduling must deal with situations such as wide-area distributed data, data sharing, WAN bandwidth costs and datacenter capacity limits, while also minimizing makespan. However, this scheduling problem is NP-hard. We propose a new resource allocation algorithm called HPS+, an extension to Hypergraph Partition-based Scheduling. HPS+ models the combined task-data dependencies and data-datacenter dependencies as an augmented hypergraph, and adopts an improved hypergraph partition technique to minimize WAN traffic. It further uses a coordination mechanism to allocate network resources closely following the guidelines of task requirements, for minimizing the makespan. Evaluation across the real China-Astronomy-Cloud model and Google datacenter model show that HPS+ saves the amount of data transfers by upto 53 percent and reduces the makespan by 39 percent compared to existing algorithms.
机译:最近的趋势表明,云计算正在增长,以覆盖越来越多的全球分布式数据中心。对于地理分布的数据中心,越来越需要通过联合考虑WAN流量和计算的调度算法来跨数据中心放置任务。这种调度必须处理诸如广域分布式数据,数据共享,WAN带宽成本和数据中心容量限制之类的情况,同时还必须最大程度地缩短制造时间。但是,此调度问题是NP难题。我们提出了一种称为HPS +的新资源分配算法,它是对基于Hypergraph分区的计划的扩展。 HPS +将合并的任务数据依存关系和数据数据中心依存关系建模为增强的超图,并采用改进的超图分区技术以最大程度地减少WAN流量。它还使用一种协调机制来按照任务要求的指导原则紧密分配网络资源,以最大程度地缩短工期。对真实的中国-天文学-云模型和Google数据中心模型进行的评估表明,与现有算法相比,HPS +最多可节省53%的数据传输量,并将有效期缩短39%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号