首页> 外文期刊>Concurrency and computation: practice and experience >Graph partition–based data and task co-scheduling of scientific workflow in geo-distributed datacenters
【24h】

Graph partition–based data and task co-scheduling of scientific workflow in geo-distributed datacenters

机译:地理分布数据中心中基于图分区的数据和科学工作流的任务协同调度

获取原文
获取原文并翻译 | 示例

摘要

Most large-scale scientific workflows take place in multiple collaborative datacenters for accessto community-wide resources, while adhering to each datacenter's non-uniform resource limits.However, moving both initial input datasets with predetermined locations and intermediatedatasets needing placement decisions across geo-distributed datacenters hinders efficientexecution of large-scale data-intensive scientific workflows. Thus, scientific workflow's data andtask co-scheduling deal with situations such as pre-placed initial input datasets, placement ofintermediate datasets and each datacenter's non-uniform computation and storage constraint,while minimizing the cross-datacenter data transfer. Since this scheduling problem is known tobe NP-hard, here, we propose a novel approach, based on the multilevel graph coarsening anduncoarsening framework, togetherwith a specialized hybrid genetic algorithm having distinctivegraph partition driven features of repair and local improvement, for scheduling data-intensivescientific workflows in geo-distributed datacenters and optimizing the cross-datacenter datatransfer volume. Extensive simulations, based on four real-world workflow traces, show thatour algorithm significantly reduces the overall geo-distributed data transfer and demonstrate itseffectiveness.
机译:大多数大型科学工作流都在多个协作数据中心中进行,以访问社区范围内的资源,同时遵守每个数据中心的非统一资源限制,但是,将初始输入数据集和具有预定位置的中间数据集以及需要在地理分布的数据中心之间进行放置决策的中间数据集都移动阻碍了大规模数据密集型科学工作流程的有效执行。因此,科学工作流的数据和任务协同调度可以处理诸如预先放置的初始输入数据集,中间数据集的放置以及每个数据中心的非均匀计算和存储约束之类的情况,同时最大程度地减少了跨数据中心的数据传输。由于这种调度问题已知是NP难的,因此在此,我们提出一种基于多级图粗化和不粗化框架以及具有独特图分区驱动的修复和局部改进功能的混合遗传算法的新型方法,用于调度数据密集型科学地理分布数据中心的工作流程,并优化跨数据中心的数据传输量。基于四个实际工作流跟踪的广泛模拟显示,我们的算法显着减少了整个地理分布的数据传输并证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号