首页> 外文期刊>Parallel Algorithms and Applications >Determining the appropriate number of nodes for fast mining of frequent patterns in distributed computing environments
【24h】

Determining the appropriate number of nodes for fast mining of frequent patterns in distributed computing environments

机译:确定适当数量的节点以快速挖掘分布式计算环境中的频繁模式

获取原文
获取原文并翻译 | 示例

摘要

The rapid growth of data brought new challenges, the execution efficiency and scalability, for mining frequent patterns (FPs). To accelerate the execution, many algorithms based on the generate-and-test approach or FP-growth utilising parallel distributed technologies have been proposed in recent years. Most of the past studies focused on designing efficient mining algorithm, and none of them has explored how the appropriate number of computing nodes is determined. Using too many computing nodes will increase the execution time because the existing algorithms need to transmit the sub-databases or FP-trees over the network; using insufficient computing nodes may not effectively distribute the mining loading. In this article, we propose a novel algorithm for efficiently mining FPs with the ability to determine the appropriate number of computing nodes in distributed computing environments. Through empirical evaluations in various simulation conditions, the proposed algorithm is shown to deliver excellent performance in terms of execution time.
机译:数据的快速增长给挖掘频繁模式(FP)带来了新的挑战,执行效率和可伸缩性。为了加快执行速度,近年来已经提出了许多基于使用并行分布式技术的“生成-测试”方法或FP-growth的算法。过去的大多数研究都集中在设计有效的挖掘算法上,但都没有探索如何确定适当数量的计算节点。使用过多的计算节点将增加执行时间,因为现有算法需要通过网络传输子数据库或FP树。使用不足的计算节点可能无法有效分配挖掘负荷。在本文中,我们提出了一种新颖的算法,可以有效地挖掘FP,并能够确定分布式计算环境中适当数量的计算节点。通过在各种仿真条件下的经验评估,该算法在执行时间方面表现出出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号