首页> 外文OA文献 >A Distributed Algorithm for Fast Mining Frequent Patterns in Limited and Varying Network Bandwidth Environments
【2h】

A Distributed Algorithm for Fast Mining Frequent Patterns in Limited and Varying Network Bandwidth Environments

机译:一种分布式算法,用于快速挖掘有限和不同网络带宽环境中的频繁模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data mining is a set of methods used to mine hidden information from data. It mainly includes frequent pattern mining, sequential pattern mining, classification, and clustering. Frequent pattern mining is used to discover the correlation among various sets of items within large databases. The rapid upward trend in data size slows the mining of frequent patterns. Numerous studies have attempted to develop algorithms that operate in distributed computing environments to accelerate the mining process. FLR-mining (Fast, Load balancing and Resource efficient mining algorithm) is one of the fastest methods of mining with efficient consideration of load balancing and resources. FLR-mining can automatically determine the appropriate number of computing nodes. However, FLR-mining and existing methods assume that the network bandwidth is constant. In practical distributed and many-task computing systems, this assumption fails because there are packet collisions caused by many mining tasks that run in a simultaneous manner. Therefore, a method that can consider the varying network bandwidth is necessary. In this study, we propose a method that can rapidly mine frequent patterns under the varying network bandwidth. The proposed method can also determine the appropriate number of computing nodes to efficiently utilize computing resources and achieve load balancing. Through empirical evaluation, the proposed method is shown to deliver excellent performance in terms of execution efficiency and load balancing.
机译:数据挖掘是一组用于从数据中挖掘隐藏信息的方法。它主要包括频繁的模式挖掘,顺序模式挖掘,分类和聚类。频繁的模式挖掘用于发现大型数据库中各种项目之间的相关性。数据大小的快速上升趋势会减慢频繁模式的开采。许多研究已经尝试开发在分布式计算环境中运行的算法,以加速采矿过程。 FLR-MINING(快速,负载平衡和资源高效采矿算法)是挖掘负载平衡和资源的有效考虑最快的采矿方法之一。 FLR-MINING可以自动确定适当数量的计算节点。但是,FLR-MINING和现有方法假设网络带宽是恒定的。在实际分布式和许多任务计算系统中,这种假设失败,因为存在以同时方式运行的许多挖掘任务引起的分组碰撞。因此,需要考虑变化的网络带宽的方法是必要的。在这项研究中,我们提出了一种可以在不同网络带宽下快速挖掘频繁模式的方法。所提出的方法还可以确定适当数量的计算节点,以有效地利用计算资源并实现负载平衡。通过经验评估,所提出的方法显示在执行效率和负载平衡方面提供出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号