首页> 外文期刊>Intelligent automation and soft computing >An Algorithm for Fast Mining Top-rank-k Frequent Patterns based on Node-list Data Structure
【24h】

An Algorithm for Fast Mining Top-rank-k Frequent Patterns based on Node-list Data Structure

机译:基于节点列表数据结构的Top-k频繁模式快速挖掘算法

获取原文
获取原文并翻译 | 示例

摘要

Frequent pattern mining usually requires much run time and memory usage. In some applications, only the patterns with top frequency rank are needed. Because of the limited pattern numbers, quality of the results is even more important than time and memory consumption. A Frequent Pattern algorithm for mining Top-rank-K patterns, FP_TopK, is proposed. It is based on a Node-list data structure extracted from FTPP-tree. Each node is with one or more triple sets, which contain supports, preorder and postorder transversal orders for candidate pattern generation and top-rank-k frequent pattern mining. FP_TopK uses the minimal support threshold for pruning strategy to guarantee that each pattern in the top-rank-k table is really frequent and this further improves the efficiency. Experiments are conducted to compare FP_TopK with iNTK and BTK on four datasets. The results show that FP_TopK achieves better performance.
机译:频繁的模式挖掘通常需要大量的运行时间和内存使用量。在某些应用中,仅需要具有最高频率等级的模式。由于模式数量有限,结果的质量比时间和内存消耗更为重要。提出了一种挖掘Top-rank-K模式的频繁模式算法FP_TopK。它基于从FTPP树提取的节点列表数据结构。每个节点具有一个或多个三元组,其中包含用于候选模式生成和排名靠前的k频繁模式挖掘的支持,前顺序和后顺序横向顺序。 FP_TopK使用最小支持阈值进行修剪,以确保排在前k位的表中的每个模式确实非常频繁,这进一步提高了效率。进行了实验,以在四个数据集上比较FP_TopK和iNTK和BTK。结果表明,FP_TopK获得了更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号