首页> 外文期刊>Distributed and Parallel Databases >A fast and low idle time method for mining frequent patterns in distributed and many-task computing environments
【24h】

A fast and low idle time method for mining frequent patterns in distributed and many-task computing environments

机译:一种快速,低空闲时间的方法,用于在分布式和多任务计算环境中挖掘频繁模式

获取原文
获取原文并翻译 | 示例

摘要

Association rules mining has attracted much attention among data mining topics because it has been successfully applied in various fields to find the association between purchased items by identifying frequent patterns (FPs). Currently, databases are huge, ranging in size from terabytes to petabytes. Although past studies can effectively discover FPs to deduce association rules, the execution efficiency is still a critical problem, particularly for big data. Progressive size working set (PSWS) and parallel FP-growth (PFP) are state-of-the-art methods that have been applied successfully to parallel and distributed computing technology to improve mining processing time in many-task computing, thereby bridging the gap between high-throughput and high-performance computing. However, such methods cannot mine before obtaining a complete FP-tree or the corresponding subdatabase, causing a high idle time for computing nodes. We propose a method that can begin mining when a small part of an FP-tree is received. The idle time of computing nodes can be reduced, and thus, the time required for mining can be reduced effectively. Through an empirical evaluation, the proposed method is shown to be faster than PSWS and PFP.
机译:关联规则挖掘在数据挖掘主题中引起了极大的关注,因为它已成功应用于各个领域,通过识别频繁模式(FP)来找到购买项目之间的关联。当前,数据库非常庞大,大小从TB到PB。尽管过去的研究可以有效地发现FP来推断关联规则,但是执行效率仍然是一个关键问题,尤其是对于大数据而言。渐进式大小工作集(PSWS)和并行FP增长(PFP)是最先进的方法,已成功应用于并行和分布式计算技术,以缩短多任务计算中的挖掘处理时间,从而缩小了差距在高吞吐量和高性能计算之间。但是,这样的方法无法在获得完整的FP树或相应的子数据库之前进行挖掘,从而导致计算节点的空闲时间较长。我们提出了一种方法,该方法可以在接收到一小部分FP树时开始挖掘。可以减少计算节点的空闲时间,从而可以有效减少挖掘所需的时间。通过实证评估,所提出的方法显示出比PSWS和PFP更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号