首页> 外文期刊>Parallel Algorithms and Applications >Towards swarm level optimisation: the role of different movement patterns in swarm systems
【24h】

Towards swarm level optimisation: the role of different movement patterns in swarm systems

机译:朝着群体优化:群体系统中不同运动方式的作用

获取原文
获取原文并翻译 | 示例

摘要

In a swarm system, for example in a beehive, group decision is based on interactions and interferences of all individuals without a central unit that decides for everybody. When making experiments with young honeybees {Apis mellifera), a swarm algorithm, called BEECLUST, was derived. The algorithm enables swarms to locate the 'Global-Goal' out of several local optima. There were also four different behavioural types discovered during the experiments: Random-Walker, Goal-Finder, Wall-Follower and the Immobile Bee. In this paper, we introduce the four behavioural types to the BEECLUST algorithm and analyse how the decision making process of the swarm can be influenced. We show how the different types can be used to optimise the decision making for a certain setup of the arena and discuss about Swarm Level Optimisation.
机译:在群体系统中,例如在蜂巢中,群体决策基于所有个体的交互和干扰,而没有一个中央机构为每个人做出决定。当对年轻的蜜蜂(蜜蜂)进行实验时,得出了一种称为BEECLUST的蜂群算法。该算法使群体能够从多个局部最优值中定位“全局目标”。在实验中还发现了四种不同的行为类型:随机游走者,目标发现者,墙跟从者和不动的蜜蜂。在本文中,我们将四种行为类型介绍给BEECLUST算法,并分析如何影响群体的决策过程。我们将展示如何将不同类型的数据用于优化竞技场的特定设置的决策,并讨论有关“群体水平优化”的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号