首页> 外文期刊>Optimization Methods and Software >The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
【24h】

The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems

机译:带约束子问题的增广拉格朗日方法中惩罚参数的有界性

获取原文
获取原文并翻译 | 示例

摘要

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficu therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.View full textDownload full textKeywordsnonlinear programming, augmented Lagrangian methods, penalty parameters, numerical experiments AMS Subject Classifications 90C30, 49K99, 65K05Related var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556788.2011.556634
机译:增强拉格朗日方法是解决大规模非线性规划问题的有效工具。在每个外部迭代中,具有简单约束的最小化子问题都得到了近似求解,该子问题的目标函数取决于更新的拉格朗日乘数和惩罚参数。当惩罚参数变得非常大时,解决子问题就变得困难了。因此,这种方法的有效性与惩罚参数的有界性有关。在本文中,证明了在比迄今为止使用的假设更自然的假设下,惩罚参数是有界的。为了证明新的有界性结果,对原始算法进行了一些修改。讨论了修改的数值结果,并提出了计算实验。 services_compact:“ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556788.2011.556634

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号