首页> 外文期刊>Optimization and Engineering >Control of dead-time systems using derivative free local search guided population based incremental learning algorithms
【24h】

Control of dead-time systems using derivative free local search guided population based incremental learning algorithms

机译:使用基于导数的无本地搜索引导人口的增量学习算法控制停滞时间系统

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces two improved forms of population based incremental learning (PBIL) algorithm applied to proportional integral derivative (PID) controller and Smith predictor design. Derivative free optimization methods, namely simplex derivative pattern search (SDPS) and implicit filtering (IMF) are used to intensify search mechanism in PBIL algorithm with improved convergence than that of the original PBIL. Although the idea of combining local methods and global methods is not new, this paper focuses application of hybrid heuristics to the vast field of control design especially, control of systems having dead-time. The effectiveness of the controller schemes arrived using the developed algorithms namely simplex derivative pattern search guided population based incremental learning (SDPS-PBIL) and implicit filtering guided population based incremental learning (IMF-PBIL) are demonstrated using unit step set point response for a class of dead-time systems. The results are compared with some existing methods of controller tuning.
机译:本文介绍了两种改进形式的基于人口的增量学习(PBIL)算法,分别应用于比例积分微分(PID)控制器和Smith预估器设计。无导数自由优化方法,即单纯形导数模式搜索(SDPS)和隐式滤波(IMF),被用于增强PBIL算法中的搜索机制,其收敛性优于原始PBIL。尽管结合局部方法和全局方法的想法并不新鲜,但本文将混合启发式方法的应用重点放在了控制设计的广阔领域,尤其是具有死区时间的系统的控制。使用类的单位阶跃设定点响应,证明了使用已开发算法(即单纯形导数模式搜索指导的基于种群的增量学习(SDPS-PBIL)和隐式过滤指导的基于种群的增量学习(IMF-PBIL))得出的控制器方案的有效性。死区时间系统。将结果与一些现有的控制器调整方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号