首页> 外文期刊>Optimization and Engineering >An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning
【24h】

An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning

机译:自适应神经模糊推理系统结合教学优化的有效方法在S45C数控车削加工优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an effective integration of the Taguchi method (TM), Adaptive neuro-fuzzy inference system (ANFIS) and Teaching learning-based optimization (TLBO) for CNC turning optimization of S45C carbon steel. The TM plays two main roles: it reduces the number of experiments and identifies the most appropriate membership functions (MFs) and suitable learning procedure for the ANFIS. To determine the suitable ANFIS structure, we optimize the root mean squared error, a performance criterion of the ANFIS. Then, taking the established ANFIS structure, we form the virtual mathematical relations between the geometric parameters and the roughness surfaces. The results found that the triangular-shaped MFs and pi-shaped MFs are the best for the R-a and R-z roughness surfaces, respectively. The optimal parameters for ANFIS structure of R-a are found in terms of the number of input MFs of 3, the trimf MFs, hybrid learning method, and linear output MFs. The optimal parameters for ANFIS structure of R-z are determined at the number of input MFs of 3, the pimf MFs, hybrid learning method, and linear output MFs. Based on the improved ANFIS establishments and optimal parameters of TLBO, the TLBO-based ANFIS is used to optimize the design parameters of the turning. We apply analysis of variance to determine the significant contribution of each factor. The results show a relative decrease in the roughness surfaces compared to those predicted by other algorithms. Therefore, the proposed optimization approach is a robust and effective tool for engineering applications.
机译:本文提出了Taguchi方法(TM),自适应神经模糊推理系统(ANFIS)和基于教学学习的优化(TLBO)的有效集成,以实现S45C碳钢的CNC车削优化。 TM扮演两个主要角色:减少实验次数,并为ANFIS确定最合适的隶属函数(MF)和合适的学习程序。为了确定合适的ANFIS结构,我们优化了均方根误差(ANFIS的性能标准)。然后,采用已建立的ANFIS结构,在几何参数和粗糙度表面之间形成虚拟数学关系。结果发现,三角形MF和pi MF最适合R-a和R-z粗糙表面。 R-a的ANFIS结构的最佳参数根据输入MF数为3,trimf MF,混合学习方法和线性输出MF来找到。 R-z的ANFIS结构的最佳参数由3个输入MF,pimf MF,混合学习方法和线性输出MF的数量确定。基于改进的ANFIS设置和TLBO的最佳参数,基于TLBO的ANFIS用于优化车削的设计参数。我们应用方差分析来确定每个因素的显着贡献。结果表明,与其他算法预测的结果相比,粗糙表面的相对减少。因此,所提出的优化方法对于工程应用是一种强大而有效的工具。

著录项

  • 来源
    《Optimization and Engineering》 |2019年第3期|811-832|共22页
  • 作者单位

    Ind Univ Ho Chi Minh City, Fac Mech Engn, Ho Chi Minh City, Vietnam;

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China;

    Ton Duc Thang Univ, Inst Computat Sci, Div Computat Mechatron, Ho Chi Minh City, Vietnam|Ton Duc Thang Univ, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam;

    Natl Kaohsiung Univ Sci & Technol, Dept Mech Engn, 415 ChienKung Rd, Kaohsiung 80778, Taiwan;

    Natl Kaohsiung Univ Sci & Technol, Dept Mech Engn, 415 ChienKung Rd, Kaohsiung 80778, Taiwan;

    Ton Duc Thang Univ, Inst Computat Sci, Div Construct Computat, Ho Chi Minh City, Vietnam|Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam;

    Ind Univ Ho Chi Minh City, Fac Mech Engn, Ho Chi Minh City, Vietnam;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CNC Turning; Taguchi method; Adaptive neuro-fuzzy inference system; Teaching learning-based optimization;

    机译:CNC转动;TAGUCHI方法;自适应神经模糊推理系统;教学基于学习的优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号