首页> 外文期刊>Numerical Heat Transfer, Part B: Fundamentals >Development of a Compact and Accurate Discretization for Incompressible Navier-Stokes Equations Based on an Equation-Solving Solution Gradient, Part II: Formulation on Unstructured Polygonal Grids
【24h】

Development of a Compact and Accurate Discretization for Incompressible Navier-Stokes Equations Based on an Equation-Solving Solution Gradient, Part II: Formulation on Unstructured Polygonal Grids

机译:基于方程求解梯度的不可压缩Navier-Stokes方程紧凑而精确的离散化开发,第二部分:非结构化多边形网格的公式化

获取原文
获取原文并翻译 | 示例

摘要

In this article, we develop a feasible solution procedure for solving convection-diffusion equations on unstructured grids as our second step to simulate incompressible fluid flow problems in complicated domains. Fundamentals of this procedure have been introduced in our previous work and verified in the one-dimensional situation as well as on a two-dimensional rectangular grid. All essential aspects of the discretization process on unstructured grids are detailed in the present work. Since the solution gradients required for a second-order accurate discretization are solved directly by their corresponding equations, it will result in a compact scheme which directly involves minimal computational nodes. Test problems are solved numerically with various grid arrangements to verify this proposition. From the numerical results, it is clearly shown that the present formulation can provide accurate difference expressions for the steady convection-diffusion equation on unstructured grids regardless of the grid arrangement. Therefore, the present formulation will serve as a kernel scheme to simulate fluid flow phenomena in complicated domains.View full textDownload full textRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10407790.2010.508656
机译:在本文中,我们开发了一种可行的求解方法,用于求解非结构网格上的对流扩散方程,这是我们在复杂域中模拟不可压缩流体流动问题的第二步。此过程的基本原理已在我们以前的工作中介绍,并在一维情况以及二维矩形网格中得到了验证。在本工作中,详细介绍了非结构化网格上离散化过程的所有基本方面。由于二阶精确离散化所需的解梯度直接由它们的相应方程式求解,因此将导致紧凑的方案,该方案直接涉及最少的计算节点。用各种网格布置以数值方式解决了测试问题,以验证这一命题。从数值结果可以清楚地看出,本发明的公式可以为非结构网格上的稳态对流扩散方程提供精确的差分表达式,而与网格的布置无关。因此,本公式将作为模拟复杂域中流体流动现象的核心方案。查看全文下载全文相关var addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,servicescompact:“ citeulike,netvibes,twitter,technorati,delicious ,linkedin,facebook,stumbleupon,digg,google,更多”,发布号:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10407790.2010.508656

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号