首页> 美国卫生研究院文献>other >State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation
【2h】

State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

机译:带有量化误差的状态空间截断可精确求解离散化学主方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.
机译:离散化学主方程(dCME)为研究介观反应网络中的随机性提供了一个通用框架。由于状态空间大小的增加,其直接解决方案很快变得难以解决,因此对于大多数dCME而言,截断状态空间是必要的。因此,重要的是评估状态空间截断的后果,以便可以量化错误并将错误最小化。在这里,我们描述了一种用于状态空间截断的新颖方法。通过将反应网络划分为多个分子等价基团(MEG),我们通过限制每个MEG中的总分子拷贝数来截断状态空间。我们进一步描述了使用反射边界来分析稳态概率态势中的截断误差的理论框架。通过基于MEG的使用来聚合状态空间并构造一个聚合的Markov过程,我们表明MEG的截断误差可以由MEG反射边界上的状态概率渐近地界定。此外,任意MEG的截断状态不会破坏截断任何其他MEG的估计误差。然后,我们为具有多个MEG的网络提供总体误差估计。为了快速确定任意MEG的适当大小,我们还引入了一种先验方法来估计其截断误差的上限。可以从网络的反应速率快速计算出该先验估计,而无需昂贵的dCME试用解决方案。作为示例,我们展示了将我们的方法应用于以下四个随机网络的结果:1)出生和死亡模型,2)单基因表达模型,3)遗传拨动开关模型和4)噬菌体λ双稳态表观遗传开关模型。我们演示了如何使用不同大小的MEG计算截断误差和稳态概率态势,以及结果如何验证理论。总体而言,这里开发的新颖的状态空间截断和错误分析方法可用于确保对大量随机网络的dCME进行准确的直接解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号