首页> 外文期刊>Numerical Algorithms >Two effective hybrid conjugate gradient algorithms based on modified BFGS updates
【24h】

Two effective hybrid conjugate gradient algorithms based on modified BFGS updates

机译:基于改进的BFGS更新的两种有效的混合共轭梯度算法

获取原文
获取原文并翻译 | 示例

摘要

Based on two modified secant equations proposed by Yuan, and Li and Fukushima, we extend the approach proposed by Andrei, and introduce two hybrid conjugate gradient methods for unconstrained optimization problems. Our methods are hybridizations of Hestenes-Stiefel and Dai-Yuan conjugate gradient methods. Under proper conditions, we show that one of the proposed algorithms is globally convergent for uniformly convex functions and the other is globally convergent for general functions. To enhance the performance of the line search procedure, we propose a new approach for computing the initial value of the steplength for initiating the line search procedure. We give a comparison of the implementations of our algorithms with two efficiently representative hybrid conjugate gradient methods proposed by Andrei using unconstrained optimization test problems from the CUTEr collection. Numerical results show that, in the sense of the performance profile introduced by Dolan and Moré, the proposed hybrid algorithms are competitive, and in some cases more efficient.
机译:基于Yuan和Li和Fukushima提出的两个修正割线方程,我们扩展了Andrei提出的方法,并针对无约束优化问题引入了两种混合共轭梯度法。我们的方法是Hestenes-Stiefel和Dai-Yuan共轭梯度法的杂交。在适当的条件下,我们证明了所提出的算法之一对于均匀凸函数是全局收敛的,而对于一般函数则是全局收敛的。为了提高行搜索过程的性能,我们提出了一种新的方法来计算步长的初始值,以启动行搜索过程。我们使用CUTEr集合中的无约束优化测试问题,将我们的算法与Andrei提出的两种有效的代表性混合共轭梯度方法进行了比较。数值结果表明,从Dolan和Moré引入的性能轮廓的角度来看,所提出的混合算法具有竞争力,在某些情况下效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号