首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Optimization of pre-amorphization and dopant implant conditions for advanced annealing
【24h】

Optimization of pre-amorphization and dopant implant conditions for advanced annealing

机译:优化用于高级退火的预非晶化和掺杂剂注入条件

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

As CMOS device dimensions shrink toward the 45 nm technology node, the junction depth of the source/drain extensions must decrease to 7-12 nm in order to minimize short channel effects. Simultaneously, the desire for high transistor drive currents and fast device performance leads to the requirement of a maximum PMOS extension sheet resistance of 830 Omega/square. In order to meet the junction depth requirement, advanced annealing techniques with maximum temperature dwell times of about 1 ms are being developed and assessed, since they enable dopant activation with minimal diffusion from the as-implanted dopant profile. Nevertheless, achieving low sheet resistances with junctions formed by these advanced anneals is a challenge. Pre-amorphization with Ge+ ions is commonly used to reduce the asimplanted junction depth by minimizing channeling, but the pre-amorphization implant conditions influence the junction sheet resistance along with the dopant implant conditions. This paper will discuss an optimization study of pre-amorphization and dopant implant conditions with advanced annealing for PMOS source/drain extension formation. The energy and dose of Ge+ pre-amorphization implants and B+ dopant implants were varied to find the minimum sheet resistance and junction depth. The optimal implant conditions for advanced anneal are found to be different from those previously reported for spike anneal. Two types of dopant activation mechanisms will be discussed to explain the different sets of optimum conditions. In addition, the boron diffusion appears to be controlled by the Ge peak position, which can be used to improve profile abruptness. These mechanisms together appear to provide the knobs that enable formation of p(+)-n junctions satisfying the ITRS 45 nm requirements. (c) 2005 Elsevier B.V. All rights reserved.
机译:随着CMOS器件尺寸向45 nm技术节点缩小,源极/漏极扩展的结深度必须减小至7-12 nm,以最大程度地减小短沟道效应。同时,对高晶体管驱动电流和快速器件性能的需求导致要求最大830 Omega / square的PMOS扩展薄层电阻。为了满足结深度的要求,目前正在开发和评估先进的退火技术,该技术具有约1 ms的最大温度停留时间,因为它们能够实现掺杂物活化,并且从植入的掺杂物分布中扩散最小。然而,通过这些高级退火形成的结实现低薄层电阻是一个挑战。通常使用Ge +离子进行预非晶化以通过最小化沟道来减小注入的结深度,但是预非晶化注入条件会影响结薄层电阻以及掺杂剂注入条件。本文将讨论通过高级退火对PMOS源/漏扩展层形成进行预非晶化和掺杂注入条件的优化研究。改变Ge +预非晶化注入和B +掺杂注入的能量和剂量,以找到最小的薄层电阻和结深度。发现用于高级退火的最佳植入条件与先前报道的尖峰退火的条件不同。将讨论两种类型的掺杂剂激活机制来解释最佳条件的不同集合。此外,硼的扩散似乎受Ge峰位置的控制,可用于改善轮廓的突变率。这些机制一起似乎提供了旋钮,使得能够形成满足ITRS 45 nm要求的p(+)-n结。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号