首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Development of the beam extraction synchronization system at the Fermilab Booster
【24h】

Development of the beam extraction synchronization system at the Fermilab Booster

机译:在Fermilab Booster上开发束提取同步系统

获取原文
获取原文并翻译 | 示例

摘要

The new beam extraction synchronization control system called "Magnetic Cogging" was developed at the Fermilab Booster and it replaces a system called "RF Cogging" as part of the Proton Improvement Plan (PIP). The flux throughput goal for the PIP is 2.2 × 10~(17) protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.
机译:在费米实验室助推器上开发了一种新的束提取同步控制系统,称为“磁性齿槽效应”,它取代了作为质子改进计划(PIP)一部分的名为“ RF齿槽效应”的系统。 PIP的通量吞吐量目标是每小时2.2×10〜(17)质子,是当前通量的两倍。通量的增加将通过使光束周期数加倍来实现,如果不进行其他操作,则光束循环数将使Booster加速器中的光束损耗增加一倍。助推器将光束从400 MeV加速到8 GeV,并将其提取到主注入器(MI)或回收器环(RR)。齿槽效应控制在加速器周期的早期创建的光束提取间隙位置,并使间隙与加速器抽气推进器和MI / RR注入推进器的上升沿同步。 RF Cogging系统通过仅更改光束的径向位置来控制间隙位置,从而限制了光束孔径并由于光束刮擦而产生了光束损耗。电磁齿槽控制系统通过偶极校正器的磁场来控制间隙位置,而径向位置反馈则将光束保持在中心轨道上。此外,借助电磁齿槽效应,当去除的粒子处于较低位置时,间隙的产生可以在加速周期的早期发生能源。因此,磁性齿槽效应减少了损失的粒子的沉积能量(电子束能量损失),并导致较少的电子束损失激活。 2015年3月,当Booster Cogging系统从RF Cogging转换为Magnetic Cogging时,通过将缝隙产生的能量从700 MeV转移到400 MeV,能量损失减少了40%。

著录项

  • 来源
  • 作者单位

    Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA;

    Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA;

    Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA;

    Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA;

    Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA;

    Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA;

    Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Longitudinal dynamics; RF; Corrector magnets; Feedback;

    机译:纵向动力学;射频;校正磁铁;反馈;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号