【24h】

50 μm thin Low Gain Avalanche Detectors (LGAD) for timing applications

机译:50μm薄型低增益雪崩检测器(LGAD),用于定时应用

获取原文
获取原文并翻译 | 示例

摘要

LGAD detectors on 300 mu m thick high resistivity p-type substrates were proposed for the first time by IMB-CNM-CSIC. They are customized Avalanche Photodiodes (APD) to obtain a high electric field region confined close to the reversed junction. Therefore, only electrons generated by an incident particle passing through the detector and drifting to the n+ contact, start the impact ionization process. Thus, the collected charge is multiplied. The basic difference between APDs and LGADs is the gain. LGADs have a moderate gain in order to avoid the inherent problems due to high multiplication: cross talk and high noise. In that way, the detector signal can be kept high without increasing the noise.These devices have been successfully fabricated and extensively characterized, before and after irradiation. Unfortunately, neutron and proton radiation cause the degradation of the gain and the creation of bulk traps, degrading the timing resolution. One way to reduce the radiation induced degradation is to minimize the substrate thickness, thus improving the timing resolution of LGAD detectors.Two technology approaches have been contemplated: the use of SOI (Silicon on insulator) substrates and Silicon to Silicon bonding substrates, both with a very thin active silicon layer of 50 mu m. As a consequence, drifting distances of generated electrons and holes are significantly reduced, resulting in a decrease in the number of electrons and holes trapped by radiation induced bulk defects.A new family of thin detectors, produced in 2x2 arrays prototypes, for the ATLAS experiment High Granularity Timing Detector (HGTD) is proposed. These detectors are suitable for timing applications with time resolution in the range of 30 ps at 20 degrees C. Optimization of the LGAD structures for the HGTD experiment and the detector experimental performances are presented and discussed.
机译:IMB-CNM-CSIC首次提出了在300微米厚的高电阻率p型衬底上的LGAD检测器。它们是定制的雪崩光电二极管(APD),用于获得限制在反向结附近的高电场区域。因此,只有入射粒子通过检测器并漂移到n +接触所产生的电子才开始碰撞电离过程。因此,所收集的电荷倍增。 APD和LGAD之间的基本区别是增益。 LGAD具有适度的增益,以避免由于高倍频而引起的固有问题:串扰和高噪声。以此方式,可以在不增加噪声的情况下将检测器信号保持在较高的水平。这些设备已经在辐射前后成功制造并进行了广泛表征。不幸的是,中子和质子辐射会导致增益的下降和大量陷阱的产生,从而降低了定时分辨率。减少辐射引起的退化的一种方法是最小化基板厚度,从而提高LGAD检测器的定时分辨率。已考虑了两种技术方法:使用SOI(绝缘体上硅)基板和硅至硅键合基板, 50微米的非常薄的有源硅层。结果,大大减少了产生的电子和空穴的漂移距离,从而减少了由辐射引起的体缺陷捕获的电子和空穴的数量。以2x2阵列原型制作的新型薄探测器系列,用于ATLAS实验提出了高粒度定时检测器(HGTD)。这些检测器适用于时间分辨率为20摄氏度,时间分辨率为30 ps的定时应用。介绍并讨论了用于HGTD实验的LGAD结构的优化和检测器的实验性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号