首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications
【24h】

Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications

机译:低增益雪崩探测器(LGAD)的技术发展和首次测量,用于高能物理应用

获取原文
获取原文并翻译 | 示例
           

摘要

This paper introduces a new concept of silicon radiation detector with intrinsic multiplication of the charge, called Low Gain Avalanche Detector (LGAD). These new devices are based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications. The main differences to standard APD detectors are the low gain requested to detect high energy charged particles, and the possibility to have fine segmentation pitches: this allows fabrication of microstrip or pixel devices which do not suffer from the limitations normally found in avalanche detectors. In addition, a moderate multiplication value will allow the fabrication of thinner devices with the same output signal of standard thick substrates. The investigation of these detectors provides important indications on the ability of such modified electrode geometry to control and optimize the charge multiplication effect, in order to fully recover the collection efficiency of heavily irradiated silicon detectors, at reasonable bias voltage, compatible with the voltage feed limitation of the CERN High Luminosity Large Hadron Collider (HL-LHC) experiments . For instance, the inner most pixel detector layers of the ATLAS tracker will be exposed to fluences up to 2 × 10~(16) 1 MeV n_(eq)/cm~2, while for the inner strip detector region fluences of 1 × 10~(15) n_(eq)/cm~2 are expected. The gain implemented in the non-irradiated devices must retain some effect also after irradiation, with a higher multiplication factor with respect to standard structures, in order to be used in harsh environments such those expected at collider experiments.
机译:本文介绍了一种具有电荷固有倍数的硅辐射探测器的新概念,称为低增益雪崩探测器(LGAD)。这些新设备基于通常用于光学和X射线检测应用的标准雪崩光电二极管(APD)。与标准APD检测器的主要区别在于检测高能带电粒子所需的低增益,以及具有精细的分段间距的可能性:这允许制造微带或像素设备,而这些设备不遭受雪崩检测器中通常存在的限制。另外,适当的倍增值将允许制造出与标准厚基板具有相同输出信号的更薄器件。对这些检测器的研究为这种修饰的电极几何形状控制和优化电荷倍增效应的能力提供了重要的指示,以便在合理的偏置电压下完全恢复严重辐照的硅检测器的收集效率,并与电压馈送限制兼容CERN高光强强子对撞机(HL-LHC)的实验。例如,ATLAS跟踪器的最里面的像素检测器层将受到最高2×10〜(16)1 MeV n_(eq)/ cm〜2的能量密度的影响,而对于内部条带检测器区域,能量密度将达到1×10预期约为(15)n_(eq)/ cm〜2。在非辐照设备中实现的增益必须在辐照后也保持一定的效果,相对于标准结构,该因子具有更高的倍增系数,以便在恶劣的环境(如对撞机实验中预期的环境)中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号