首页> 外文期刊>Nonlinear Dynamics >Global exponential convergence and global convergence in finite time of non-autonomous discontinuous neural networks
【24h】

Global exponential convergence and global convergence in finite time of non-autonomous discontinuous neural networks

机译:非自治不连续神经网络在有限时间内的全​​局指数收敛和全局收敛

获取原文
获取原文并翻译 | 示例

摘要

The paper investigates global convergence of the solutions of a non-autonomous differential system with discontinuous right-hand side, arising from the description of the states of neurons in a general class of neural networks possessing discontinuous neuron activations in a time-varying situation. By exploring intrinsic features between the non-autonomous system and its asymptotic system, several novel sufficient conditions are derived which ensure global exponential convergence of the networks. Moreover, under some conditions, we prove that this networks possesses the property of global convergence in finite time, which cannot occur in smooth system. Our results can be easily verified and complement previous known criteria.
机译:本文研究了具有不连续右手边的非自治微分系统解的全局收敛性,这是由于在时变情况下具有不连续神经元激活的一般神经网络中神经元状态的描述引起的。通过探索非自治系统及其渐近系统之间的内在特征,得出了确保网络全局指数收敛的几种新颖的充分条件。此外,在一定条件下,我们证明了该网络具有有限时间的全局收敛性,这在光滑系统中是不可能发生的。我们的结果可以轻松验证并补充以前的已知标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号