首页> 外文期刊>IEEE Transactions on Neural Networks >Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain
【24h】

Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain

机译:无限增益时滞神经网络在有限时间内的全​​局指数稳定性和全局收敛性

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a general class of neural networks with arbitrary constant delays in the neuron interconnections, and neuron activations belonging to the set of discontinuous monotone increasing and (possibly) unbounded functions. The discontinuities in the activations are an ideal model of the situation where the gain of the neuron amplifiers is very high and tends to infinity, while the delay accounts for the finite switching speed of the neuron amplifiers, or the finite signal propagation speed. It is known that the delay in combination with high-gain nonlinearities is a particularly harmful source of potential instability. The goal of this paper is to single out a subclass of the considered discontinuous neural networks for which stability is instead insensitive to the presence of a delay. More precisely, conditions are given under which there is a unique equilibrium point of the neural network, which is globally exponentially stable for the states, with a known convergence rate. The conditions are easily testable and independent of the delay. Moreover, global convergence in finite time of the state and output is investigated. In doing so, new interesting dynamical phenomena are highlighted with respect to the case without delay, which make the study of convergence in finite time significantly more difficult. The obtained results extend previous work on global stability of delayed neural networks with Lipschitz continuous neuron activations, and neural networks with discontinuous neuron activations but without delays.
机译:本文介绍了在神经元互连中具有任意恒定延迟的一类通用神经网络,并且神经元激活属于一组不连续的单调递增和(可能)无界函数。激活中的不连续性是神经元放大器的增益非常高并趋于无穷大的情况的理想模型,而延迟则说明了神经元放大器的有限开关速度或有限信号传播速度。众所周知,延迟与高增益非线性相结合是潜在不稳定的一个特别有害的来源。本文的目的是为所考虑的不连续神经网络选择一个子类,该子类的稳定性反而对延迟的存在不敏感。更准确地说,给出了一个条件,在该条件下,存在一个神经网络的唯一平衡点,该平衡点对于状态在全局上呈指数稳定,且收敛速度已知。这些条件易于测试,并且与延迟无关。此外,研究了状态和输出的有限时间内的全​​局收敛性。这样,就可以毫不延迟地针对情况突出显示新的有趣的动力学现象,这使得在有限时间内收敛的研究变得更加困难。获得的结果扩展了先前关于Lipschitz连续神经元激活的延迟神经网络和具有不连续神经元激活但没有延迟的神经网络的全局稳定性的先前工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号