首页> 外文期刊>Nonlinear Dynamics >Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis
【24h】

Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis

机译:神经动力学和复杂数据分析中的非线性动力学和混沌方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we review modern nonlinear dynamical methods used in neuroscience and complex data analysis. We start with the general description of nonlinear dynamics, its geometrical (and topological) picture, as well as its extreme case, deterministic chaos, including its most popular models and methods: Lorenz attractor, Lyapunov exponents, and Kolmogorov–Sinai entropy. Then we review the most important nonlinear models in modern computational neuroscience: (i) Spiking and bursting neurons, including: integrate-and-fire neuron (linear and quadratic, without and with adaptation as well as bursting), complex-valued resonate-and-fire neuron, FitzHugh–Nagumo neuron, Hindmarsh–Rose thalamic neuron, Morris–Lecar neuron, Wilson–Cowan model of interacting neural populations, as well as classical (more general) Hodgkin–Huxley and FitzHugh–Nagumo neural models; (ii) Synchronization in oscillatory neural networks, based on oscillatory phase neurodynamics of the famous Kuramoto network model; and (iii) Neural attractor dynamics, based on Amari’s neural field theory and its application to behavioral and motivational autonomous robot dynamics.
机译:在本文中,我们回顾了用于神经科学和复杂数据分析的现代非线性动力学方法。我们从对非线性动力学的一般描述,其几何(和拓扑)图以及极端情况,确定性混乱开始,包括其最流行的模型和方法:洛伦兹吸引子,李雅普诺夫指数和科莫莫洛夫-西奈熵。然后,我们回顾一下现代计算神经科学中最重要的非线性模型:(i)尖峰和猝发神经元,包括:积分并发射神经元(线性和二次神经元,无,有自适应,也有猝发),复数值共振和火神经元,FitzHugh–Nagumo神经元,Hindmarsh–Rose丘脑神经元,Morris–Lecar神经元,相互作用的神经群体的Wilson–Cowan模型,以及经典(更为通用的)Hodgkin–Huxley和FitzHugh–Nagumo神经模型; (ii)基于著名的仓本网络模型的振荡相位神经动力学,在振荡神经网络中进行同步; (iii)基于Amari神经场理论的神经吸引子动力学及其在行为和动机自主机器人动力学中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号