首页> 外文期刊>New Generation Computing >Neuro-SERKET: Development of Integrative Cognitive System Through the Composition of Deep Probabilistic Generative Models
【24h】

Neuro-SERKET: Development of Integrative Cognitive System Through the Composition of Deep Probabilistic Generative Models

机译:Neuro-errket:通过深层概率生成模型的组成开发综合认知系统

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a framework for the development of an integrative cognitive system based on probabilistic generative models (PGMs) called Neuro-SERKET. Neuro-SERKET is an extension of SERKET, which can compose elemental PGMs developed in a distributed manner and provide a scheme that allows the composed PGMs to learn throughout the system in an unsupervised way. In addition to the head-to-tail connection supported by SERKET, Neuro-SERKET supports tail-to-tail and head-to-head connections, as well as neural network-based modules, i.e., deep generative models. As an example of a Neuro-SERKET application, an integrative model was developed by composing a variational autoencoder (VAE), a Gaussian mixture model (GMM), latent Dirichlet allocation (LDA), and automatic speech recognition (ASR). The model is called VAE + GMM + LDA + ASR. The performance of VAE + GMM + LDA + ASR and the validity of Neuro-SERKET were demonstrated through a multimodal categorization task using image data and a speech signal of numerical digits.
机译:本文介绍了一种基于概率生成模型(PGMS)的综合认知系统的开发框架,称为Neuro-Serket。 Neuro-Serket是血清通架的延伸,它可以撰写以分布式方式开发的元素PGM,并提供允许组合的PGM以无人监测的方式学习整个系统的方案。除了由塞架支撑的头部到尾部连接外,神经血清术还支持尾部和头部到头连接,以及基于神经网络的模块,即深生成模型。作为神经血管通界应用的示例,通过构成变形AutoEncoder(VAE),高斯混合模型(GMM),潜在的Dirichlet分配(LDA)以及自动语音识别(ASR)来开发一体化模型。该模型称为VAE + GMM + LDA + ASR。通过使用图像数据和数值数字的语音信号,通过多模级分类任务来证明VAE + GMM + LDA + ASR的性能和神经血清通箱的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号