首页> 外文期刊>Neurocomputing >CSENet: Cascade semantic erasing network for weakly-supervised semantic segmentation
【24h】

CSENet: Cascade semantic erasing network for weakly-supervised semantic segmentation

机译:CSENET:跨监督语义细分的级联语义擦除网络

获取原文
获取原文并翻译 | 示例

摘要

Weakly-supervised semantic segmentation based on image-level annotations has difficulty exploring pixel-level information. Most approaches adopt Class Activation Maps (CAM) to localize initial object regions, called seeds. To cover more potential object parts, seeds-expansion methods raise concern for artificial mask generation. Due to the seeds simply focus on discriminative regions, it is a challenge to spread seeds to the integral object. To tackle this problem, we propose a Cascade Semantic Erasing Network (CSENet) to expand seeds effectively and reasonably. In particular, CSENet sequentially stacks the semantic erasing stage to erase discriminative areas progressively. It forces the network to exploit rel-evant feature response for non-discriminative object districts. Moreover, CSENet directly suppresses seeds on the Class Activation Maps (CAM), which have stronger semantics, rather than on the Intermediate Feature Maps (IFM). Under semantic guidance, proposed erasing strategy correctly spreads seeds regions to the intra-class regions and meanwhile, prohibits from extending to the unexpected inter-class areas. Extensive experiments demonstrate the effectiveness of proposed CSENet. More specif-ically, our approach achieves 62.3% and 63.4% mIoU on PASCAL VOC 2012 validation and test set, respectively.(c) 2020 Elsevier B.V. All rights reserved.
机译:基于图像级注释的弱监督语义分割难以探索像素级信息。大多数方法采用类激活映射(CAM)来定位初始对象区域,称为种子。为了覆盖更多潜在的对象零件,种子 - 膨胀方法引起人工掩模生成的关注。由于种子只是专注于歧视区域,将种子传播到整体对象是一个挑战。为了解决这个问题,我们提出了一个级联语义擦除网络(CSENET),以有效且合理地扩展种子。特别地,CSENET顺序地堆叠了语义擦除阶段以逐渐擦除鉴别区域。它迫使网络利用非歧视性对象区的rel-vant功能响应。此外,CSENET直接抑制了类激活映射(CAM)上的种子,其具有更强的语义,而不是在中间特征映射(IFM)上。在语义指导下,拟议的删除策略将种子区正确分布在内的地区,同时,禁止延伸到意外的阶级区域。广泛的实验证明了拟议的CSENET的有效性。更具体地说,我们的方法分别在Pascal VOC验证和测试集中实现了62.3%和63.4%的Miou。(c)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|885-895|共11页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Key Lab Image Proc & Intelligent Control Wuhan Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Key Lab Image Proc & Intelligent Control Wuhan Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Key Lab Image Proc & Intelligent Control Wuhan Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Key Lab Image Proc & Intelligent Control Wuhan Peoples R China;

    Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Key Lab Image Proc & Intelligent Control Wuhan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Weak supervision; Semantic erasing; Class activation maps;

    机译:监督薄弱;语义擦除;类激活地图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号