首页> 外文期刊>Neurocomputing >Identifying adverse drug reaction entities from social media with adversarial transfer learning model
【24h】

Identifying adverse drug reaction entities from social media with adversarial transfer learning model

机译:用对抗转移学习模型鉴定来自社交媒体的不良药物反应实体

获取原文
获取原文并翻译 | 示例

摘要

Identifying adverse drug reaction (ADR) entities from texts is a crucial task for pharmacology, and it is the basis for the ADR relation extraction task. The publicly available resources on this task include PubMed abstracts, social media, and other resources. Among these resources, social media data can reflect the reactions of drug users after taking medicine in real-time and update quickly. However, a very small quantity of annotated social media data leads to less research on these data. Moreover, social media data have colloquialism and informal vocabulary expression problems, which pose a major challenge for ADR named entity recognition (NER). In this work, we present an adversarial transfer learning architecture for the ADR NER task. Our model improves the performance on Twitter data (target resource) by incorporating biomedical domain information from PubMed (source resource). Additionally, we set the scale parameter in the final loss function to address the problem of bias in model training caused by imbalanced amounts of data. Without adding any additional manually designed features, our approach achieves state-of-the-art performance with an F1 on Twitter ADR data of 68.58%.(c) 2021 Elsevier B.V. All rights reserved.
机译:鉴定来自文本的不良药物反应(ADR)实体对药理学的关键任务,是ADR关系提取任务的基础。此任务的公开资源包括PubMed摘要,社交媒体和其他资源。在这些资源中,社交媒体数据可以在实时采取药物后反映吸毒者的反应并快速更新。但是,非常少量的注释社交媒体数据导致对这些数据的研究更少。此外,社交媒体数据具有口语主义和非正式词汇表达问题,对ADR命名实体识别(NER)构成了一个重大挑战。在这项工作中,我们为ADR NER任务提出了对抗的转移学习架构。我们的模型通过从PubMed(源资源)的生物医学域信息结合来提高Twitter数据(目标资源)的性能。此外,我们在最终丢失函数中设置了比例参数,以解决由不平衡数据量造成的模型训练中的偏差问题。如果没有添加任何额外的手动设计的功能,我们的方法在Twitter ADR数据上实现了最先进的性能,达到了68.58%的数据。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号