首页> 外文期刊>Neurocomputing >Group multi-scale attention pyramid network for traffic sign detection
【24h】

Group multi-scale attention pyramid network for traffic sign detection

机译:组多尺度注意力金字塔网络用于交通标志检测

获取原文
获取原文并翻译 | 示例

摘要

Traffic sign detection has made great progress with the rise of deep learning in recent years. As a result of the complex and changeable traffic environment, detecting small traffic signs in a real-world scene is still a challenging problem. In this paper, a novel group multi-scale attention pyramid network is proposed to address the problem. Specifically, to aggregate the feature at different scales and suppress the messy information in the background, an effective multi-scale attention module is proposed. Furthermore, a feature fusion module, named adaptive pyramid convolution, is further designed, which can drive the network to learn the optimal feature fusion pattern and construct an informative feature pyramid for detecting traffic signs in different sizes. Extensive experimental results on the public traffic sign detection datasets demonstrate the effectiveness and superiority of the proposed method when compared with several state-of-the-art methods.(c) 2021 Elsevier B.V. All rights reserved.
机译:随着近年来深度学习的兴起,交通标志检测取得了巨大进展。由于复杂和可变的交通环境,检测在真实世界的场景中的小交通标志仍然是一个具有挑战性的问题。本文提出了一种小组多级注意力金字塔网络来解决问题。具体地,在不同尺度处聚合特征并抑制背景中的杂乱信息,提出了有效的多尺度关注模块。此外,进一步设计了一个名为自适应金字塔卷积的特征融合模块,该特征融合模块是进一步设计的,可以驱动网络来学习最佳特征融合模式,并构建信息特征金字塔,用于检测不同尺寸的交通标志。关于公共交通标志检测数据集的广泛实验结果证明了与若干现有技术相比的建议方法的有效性和优势。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号