首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images
【24h】

Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images

机译:SAR图像中用于多尺度船舶检测的密集注意力金字塔网络

获取原文
获取原文并翻译 | 示例

摘要

Synthetic aperture radar (SAR) is an active microwave imaging sensor with the capability of working in all-weather, all-day to provide high-resolution SAR images. Recently, SAR images have been widely used in civilian and military fields, such as ship detection. The scales of different ships vary in SAR images, especially for small-scale ships, which only occupy few pixels and have lower contrast. Compared with large-scale ships, the current ship detection methods are insensitive to small-scale ships. Therefore, the ship detection methods are facing difficulties with multi-scale ship detection in SAR images. A novel multi-scale ship detection method based on a dense attention pyramid network (DAPN) in SAR images is proposed in this paper. The DAPN adopts a pyramid structure, which densely connects convolutional block attention module (CBAM) to each concatenated feature map from top to bottom of the pyramid network. In this way, abundant features containing resolution and semantic information are extracted for multi-scale ship detection while refining concatenated feature maps to highlight salient features for specific scales by CBAM. Then, the salient features are integrated with global unblurred features to improve accuracy effectively in SAR images. Finally, the fused feature maps are fed to the detection network to obtain the final detection results. Experiments on the data set of SAR ship detection data set (SSDD) including multi-scale ships in various SAR images show that the proposed method can detect multi-scale ships in different scenes of SAR images with extremely high accuracy and outperforms other ship detection methods implemented on SSDD.
机译:合成孔径雷达(SAR)是一种有源微波成像传感器,能够在全天候全天候工作,以提供高分辨率的SAR图像。最近,SAR图像已广泛用于民用和军事领域,例如船舶检测。 SAR图像中不同船只的比例各不相同,特别是对于仅占用很少像素且对比度较低的小型船只。与大型船舶相比,目前的船舶检测方法对小型船舶不敏感。因此,在SAR图像的多尺度船舶检测中,船舶检测方法面临困难。提出了一种基于密集注意力金字塔网络(DAPN)的SAR图像多尺度船舶检测方法。 DAPN采用金字塔结构,该结构将卷积块注意模块(CBAM)从金字塔网络的顶部到底部紧密连接到每个串联的特征图。这样,就可以提取包含分辨率和语义信息的丰富特征以进行多尺度船舶检测,同时通过CBAM细化级联特征图以突出显示特定尺度的显着特征。然后,将显着特征与全局未模糊特征集成在一起,以有效提高SAR图像的准确性。最后,将融合后的特征图馈送到检测网络以获得最终的检测结果。对包含多种尺度图像的多尺度船舶的SAR船舶探测数据集(SSDD)数据集的实验表明,该方法能够以极高的精度检测SAR图像不同场景中的尺度船舶,优于其他船舶探测方法。在SSDD上实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号