首页> 外文期刊>Neurocomputing >Multi-view subspace clustering networks with local and global graph information
【24h】

Multi-view subspace clustering networks with local and global graph information

机译:具有本地和全局图信息的多视图子空间群集网络

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the problem of multi-view subspace clustering, the goal of which is to explore the underlying grouping structure of data collected from different fields or measurements. Since data do not always comply with the linear subspace models in many real-world applications, most existing multi view subspace clustering methods based on the shallow linear subspace models may fail in practice. Furthermore, the underlying graph information of multi-view data is usually ignored in most existing multi-view subspace clustering methods. To address the aforementioned limitations, we proposed the novel multi-view subspace clustering networks with local and global graph information, termed MSCNLG, in this paper. Specifically, autoencoder networks are employed on multiple views to achieve latent smooth representations that are suitable for the linear assumption. Simultaneously, by integrating fused multi-view graph information into self-expressive layers, the proposed MSCNLG obtains the common shared multi-view subspace representation, which can be used to get clustering results by employing the standard spectral clustering algorithm. As an end-to-end trainable framework, the proposed method fully investigates the valuable information of multiple views. Comprehensive experiments on six benchmark datasets validate the effectiveness and superiority of the proposed MSCNLG.(c) 2021 Elsevier B.V. All rights reserved.
机译:本研究调查了多视图子空间聚类的问题,其目标是探索从不同字段或测量收集的数据的底层分组结构。由于数据并不总是符合许多真实应用中的线性子空间模型,因此基于浅线性子空间模型的大多数现有的多视图子空间聚类方法可能在实践中失败。此外,在大多数现有的多视图子空间聚类方法中通常会忽略多视图数据的基础图。为了解决上述限制,我们在本文中提出了具有本地和全局图信息的新型多视图子空间集群网络,称为MSCNLG。具体而言,在多个视图上采用自动化器网络以实现适合于线性假设的潜在平滑表示。同时,通过将熔融的多视图图信息集成到自达摄层中,所提出的MSCNLG获得公共共享多视图子空间表示,其可以用于通过采用标准光谱聚类算法来获得聚类结果。作为端到端的培训框架,所提出的方法充分调查了多种视图的宝贵信息。六个基准数据集的综合实验验证了拟议的MSCNLG的有效性和优越性。(c)2021 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第18期|15-23|共9页
  • 作者单位

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subspace clustering; Autoencoder; Multi-view clustering;

    机译:子空间聚类;autoencoder;多视图群集;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号