首页> 外文期刊>Knowledge-Based Systems >Simultaneously learning feature-wise weights and local structures for multi-view subspace clustering
【24h】

Simultaneously learning feature-wise weights and local structures for multi-view subspace clustering

机译:同时学习多视图子空间聚类的功能 - 方向权重和本地结构

获取原文
获取原文并翻译 | 示例

摘要

Multi-view clustering integrates multiple feature sets, which usually have a complementary relationship and can reveal distinct insights of data from different angles, to improve clustering performance. It remains challenging to productively utilize complementary information across multiple views since there is always noise in real data, and their features are highly redundant. Moreover, most existing multi-view clustering approaches only aimed at exploring the consistency of all views, but overlooked the local structure of each view. However, it is necessary to take the local structure of each view into consideration, because individual views generally present different geometric structures while admitting the same cluster structure. To ease the above issues, in this paper, a novel multi-view subspace clustering method is established by concurrently assigning weights for different features and capturing local information of data in view-specific self-representation feature spaces. In particular, a common clustering assignment regularization is adopted to explore the consistency among multiple views. An alternating iteration algorithm based on the augmented Lagrangian multiplier is also developed for optimizing the associated objective. Experiments conducted on diverse multi-view datasets manifest that the proposed method achieves state-of-the-art performance. We provide the Matlab code on https: github.com /Ekin 102003/JFLMSL. (C) 2020 Elsevier B.V. All rights reserved.
机译:多视图群集集成了多个功能集,通常具有互补关系,并可以揭示来自不同角度的数据的独特识别,以提高聚类性能。由于实际数据总是噪声始终存在噪声,因此跨多个视图互补信息仍然具有挑战性,并且它们的功能高度冗余。此外,大多数现有的多视图聚类方法仅旨在探索所有视图的一致性,但忽略了每个视图的本地结构。然而,需要考虑每个视图的本地结构,因为各个视图通常在承认相同的集群结构的同时存在不同的几何结构。为了简化上述问题,本文通过同时为不同特征分配权重和捕获特定于特定于自我表示特征空间中的数据的局部信息来建立一种新的多视图子空间聚类方法。特别地,采用常见的聚类分配正则化来探索多个视图之间的一致性。还开发了一种基于增强拉格朗日乘法器的交替迭代算法,用于优化相关目标。在多样化的多视图数据集中进行的实验表明,该方法达到最先进的性能。我们在HTTPS上提供MATLAB代码:Github.com / ekin 102003 / JFLMSL。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号