首页> 外文期刊>Neurocomputing >Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures
【24h】

Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures

机译:通过考虑全局相似性和局部结构,通过公共子空间集成来增强多视图聚类

获取原文
获取原文并翻译 | 示例

摘要

Multi-view clustering seeks to partition objects based on various observations by utilizing cross-views to provide a complementary description of the same objects. It remains challenging to effectively fuse the multi-view data with various dimensions as well as different structures into a new yet highly informative form, thus facilitating adequate assignment of the objects. To tackle the issue, we propose a common subspace integration (CSI) model. The CSI actively learns a common subspace by jointly preserving the local geometry of each view, while incorporating a global partition information to enhance its separability during the learning process. It can be easily generalized to its kernel version, thereby popularizing its general usages. An effective alternative optimization scheme is designed to solve the proposed model. Extensive experiments on six real-world datasets were conducted to demonstrate its superiority by comparing with the twelve state-of-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:多视图聚类试图通过利用交叉视图提供对相同对象的补充描述,基于各种观察结果对对象进行分区。有效地将具有不同尺寸和不同结构的多视图数据融合为一种新的但信息量很大的形式仍然存在挑战,从而有利于对象的适当分配。为了解决此问题,我们提出了一个通用子空间集成(CSI)模型。 CSI通过共同保留每个视图的局部几何形状,同时合并全局分区信息以增强其在学习过程中的可分离性,从而主动学习公用子空间。它可以很容易地推广到其内核版本,从而普及其通用用法。设计了有效的替代优化方案来解决所提出的模型。通过与六个最新方法进行比较,对六个真实世界的数据集进行了广泛的实验,以证明其优越性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号