首页> 外文期刊>Neurocomputing >A novel pipelined neural FIR architecture for nonlinear adaptive filter
【24h】

A novel pipelined neural FIR architecture for nonlinear adaptive filter

机译:用于非线性自适应滤波器的新型流水线神经冷杉架构

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel adaptive pipelined neural finite impulse response (PNFIR) filter for nonlinear signal processing. Unlike traditional pipelined recurrent neural network (PRNN), each module of the PNFIR filter is a simple architecture that includes a standard FIR filter followed by a nonlinear activation function. The complete design of proposed filter includes two subsections: The nonlinear part consists of neural FIR (NFIR) modules which is interconnected in a chained form and simultaneously executed in a parallel fashion; the linear subsection is a tapped-delay-line (TDL) linear combiner. Based on convex combination architecture, the adaptive algorithm derived from the gradient descent approach is utilized to update weights of the nonlinear and linear parts. Moreover, the analysis of stability conditions and computational complexity is also presented. Numerous simulation experimental results on nonlinear dynamic systems identification, speech signal and chaotic time series prediction show that the proposed PNFIR filter has simpler architecture, faster convergence rate, and lower computation complexity than the PRNN and joint process filter using pipelined feedforward second-order Volterra architecture (JPPSOV).(c) 2020 Elsevier B.V. All rights reserved.
机译:本文介绍了一种用于非线性信号处理的新型自适应流水线神经有限脉冲响应(PNFIR)滤波器。与传统的流水线经常性神经网络(PRNN)不同,PNFIR滤波器的每个模块都是一个简单的架构,包括标准FIR滤波器,然后是非线性激活功能。所提出的滤波器的完整设计包括两个子部分:非线性部分由神经冷杉(NFIR)模块组成,该模块以链形式互连并以并行方式同时执行;线性子部分是延迟延迟线(TDL)线性组合器。基于凸组合架构,利用来自梯度下降方法的自适应算法来更新非线性和线性部件的权重。此外,还提出了对稳定性条件的分析和计算复杂性。许多仿真实验结果对非线性动态系统识别,语音信号和混沌时间序列预测表明,所提出的PNFIR过滤器具有更简单的架构,更快的收敛速度和比PRNN和联合过程过滤器使用流水线前馈二阶Volterra架构的架构(JPPSOV)。(c)2020 Elsevier BV保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第14期|220-229|共10页
  • 作者单位

    Southwest Jiaotong Univ Sichuan Prov Key Lab Signal & Informat Proc Chengdu 610031 Peoples R China|Vinh Univ Sch Engn & Technol Vinh Vietnam;

    Southwest Jiaotong Univ Sichuan Prov Key Lab Signal & Informat Proc Chengdu 610031 Peoples R China;

    Southwest Jiaotong Univ Sichuan Prov Key Lab Signal & Informat Proc Chengdu 610031 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Neural networks; Nonlinear adaptive filter; Pipelined architecture;

    机译:神经网络;非线性自适应过滤器;流水线架构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号