首页> 外文期刊>Neurocomputing >Event-triggered control for input constrained non-affine nonlinear systems based on neuro-dynamic programming
【24h】

Event-triggered control for input constrained non-affine nonlinear systems based on neuro-dynamic programming

机译:基于神经动力学编程的输入约束非仿射非线性系统的事件触发控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a neuro-dynamic programming (NDP)-based event-triggered control (ETC) method is proposed for unknown non-affine nonlinear systems with input constraints. A neural network-based identifier is established with measurable input and output data to learn the unknown system dynamics. Then, a critic neural network is employed to approximate the value function for solving the event triggered Hamilton-Jacobi-Bellman equation. Furthermore, an NDP-based ETC scheme is developed, which samples the states and updates the control law when the triggering condition is violated. Compared with the traditional time-triggered control methods, the ETC method can reduce computational burden, communication cost and bandwidth. In addition, the stability of the closed-loop system and the weight error convergence of the critic neural network are provided based on the Lyapunov?s direct method. The intersamling time is proved to be bounded by a positive constant, which excludes the Zeno behavior. Finally, two case studies are provided to verify the effectiveness of the developed ETC method. CO 2021 Elsevier B.V. All rights reserved.
机译:本文提出了一种用于基于输入约束的未知非仿射非线性系统的神经动态编程(NDP)的事件触发控制(ETC)方法。基于网络的基于网络的标识符,具有可测量的输入和输出数据,以了解未知的系统动态。然后,采用批评批评性神经网络来近似求解事件的价值函数触发的汉密尔顿 - Jacobi-Bellman方程。此外,开发了基于NDP的等等方案,其在违反触发条件时对状态进行采样并更新控制法。与传统的时间触发控制方法相比,ETC方法可以降低计算负担,通信成本和带宽。此外,基于Lyapunov的直接方法提供了闭环系统的稳定性和批评神经网络的重量误差收敛。被证明的基于时间的时间被正常常数被排除在外,排除了ZENO行为。最后,提供了两种案例研究以验证发达等方法的有效性。 CO 2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号