首页> 外文期刊>Neurocomputing >A neural collaborative filtering method for identifying miRNA-disease associations
【24h】

A neural collaborative filtering method for identifying miRNA-disease associations

机译:一种鉴定miRNA疾病关联的神经协同过滤方法

获取原文
获取原文并翻译 | 示例

摘要

The identification of disease-associated miRNAs can help people better understand the pathogenesis of diseases from a genetic perspective. Therefore, the prediction of miRNA-disease associations has received increasing attention. In this paper, we propose a new computational method NCFM (Neural network -based Collaborative Filtering Method) to predict miRNA-disease associations based on deep neural network. Firstly, high-dimensional sparse vectors of diseases and miRNAs are mapped into low -dimensional dense vectors in implicit semantic space via embedding layer, which called disease embedding and miRNA embedding, respectively. Secondly, the neural collaborative filter layers model the latent feature interactions between miRNAs and diseases. Then, different from other methods using square error loss function, we propose a new pairwise loss function to optimizes our model from a ranking perspective. Finally, experiments show that our proposed method can effectively prioritize disease-related miRNAs with the highest AUC of 0.912 and 0.921 compared with other recent methods in 5-fold cross validation and LOOCV framework. In addition, we implement two types of case studies, including four diseases. For a disease, more than 90% of predicted miRNAs are validated by another official dataset, which further illustrates the effectiveness of NCFM. (c) 2020 Published by Elsevier B.V.
机译:疾病相关的miRNA的鉴定可以帮助人们从遗传角度上更好地了解疾病的发病机制。因此,预测miRNA疾病关联受到越来越关注。在本文中,我们提出了一种新的计算方法NCFM(基于神经网络的协作滤波方法),以预测基于深神经网络的miRNA疾病关联。首先,通过嵌入层映射到隐式语义空间中的高度稀疏载体和miRNA分别通过嵌入层映射到明显的语义空间中的低比例密集载体。分别称为疾病嵌入和miRNA嵌入。其次,神经协同过滤层模拟miRNA和疾病之间的潜在特征相互作用。然后,与使用方形误差损失功能的其他方法不同,我们提出了一种新的成对损耗功能,以从排名透视中优化我们的模型。最后,实验表明,与5倍交叉验证和LooCV框架中的其他方法相比,我们所提出的方法可以有效地优先考虑疾病相关的MiRNA,最高AUC,0.912和0.921。此外,我们实施两种类型的案例研究,包括四种疾病。对于疾病,另一个官方数据集验证了超过90%的预测MIRNA,其进一步说明了NCFM的有效性。 (c)2020由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号