首页> 外文期刊>Neurocomputing >Unsupervised domain adaptation with self-attention for post-disaster building damage detection
【24h】

Unsupervised domain adaptation with self-attention for post-disaster building damage detection

机译:无监督域适应灾后建筑损伤检测的自我关注

获取原文
获取原文并翻译 | 示例

摘要

Fast assessment of damaged buildings is important for post-disaster rescue operations. Building damage detection leveraging image processing and machine learning techniques has become a popular research focus in recent years. Although supervised learning approaches have made considerable improvement for damaged building assessment, rapidly deploying supervised classification is still difficult due to the complexity in obtaining a large number of labeled samples in the aftermath of disasters. We propose an unsupervised self-attention domain adaptation (USADA) model, which transforms instances of the source domain to those of the target domain in pixel space, to address the aforementioned issue. The proposed USADA consists of three parts: a set of generative adversarial networks (GANs), a classifier, and a self-attention module. The GAN adapts source domain images to ensure their similarity to target domain images. Once adapted, the classifier can be trained using the adapted images along with the original images of the source domain to classify damaged buildings. The self-attention module is introduced to maintain the foreground of the generated images conditioned on source domain images for generating plausible samples. As a case study, aerial images of Hurricane Sandy, Maria, and Irma, are used as the source and target domain datasets in our experiments. Experimental results demonstrate that classification accuracies of 68.1% and 84.1% are achieved, and our method obtains improvements of 2.0% and 3.6% against pixel-level domain adaptation, which is the basis of our model. (C) 2020 The Authors. Published by Elsevier B.V.
机译:对损坏建筑的快速评估对于灾后救援行动非常重要。建筑物损伤检测利用图像处理和机器学习技术已成为近年来流行的研究重点。虽然受监管的学习方法对受损的建筑评估做出了相当大的改进,但由于在灾害之后获得了大量标记样本的复杂性而迅速部署的监督分类仍然困难。我们提出了一个无人监督的自我关注域适应(USAADS)模型,它将源域的实例转换为像素空间中的目标域的实例,以解决上述问题。拟议的美联航由三部分组成:一组生成的对抗网络(GAN),分类器和自我关注模块。 GaN适应源域图像以确保它们与目标域图像的相似性。一旦调整,可以使用适应的图像培训分类器以及源域的原始图像来对损坏的建筑物进行分类。引入自我注意模块以维持在源域图像上调节的所生成的图像的前景以产生合理的样本。作为一个案例研究,飓风桑迪,玛丽亚和IRMA的空中图像用作我们实验中的源和目标域数据集。实验结果表明,实现了68.1%和84.1%的分类准确性,我们的方法可以获得2.0%和3.6%的改善,以防止像素级域适应,这是我们模型的基础。 (c)2020作者。由elsevier b.v出版。

著录项

  • 来源
    《Neurocomputing》 |2020年第20期|27-39|共13页
  • 作者单位

    North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China;

    North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China;

    Beihang Univ Unmanned Syst Res Inst Beijing Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Guangdong Prov Key Lab Comp Vis & Virtual Real Te Shenzhen Peoples R China;

    North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China;

    North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China;

    North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Unsupervised domain adaptation; Self-attention; Hurricane damage; Damage assessment;

    机译:无监督域适应;自我关注;飓风损伤;损害评估;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号