首页> 外文期刊>Neurocomputing >Unsupervised domain adaptation with adversarial learning for mass detection in mammogram
【24h】

Unsupervised domain adaptation with adversarial learning for mass detection in mammogram

机译:对乳房X线图中的质量检测进行对抗的无监督域适应

获取原文
获取原文并翻译 | 示例

摘要

Many medical image datasets have been collected without proper annotations for deep learning training. In this paper, we propose a novel unsupervised domain adaptation framework with adversarial learning to minimize the annotation efforts. Our framework employs a task specific network, i.e., fully convolutional network (FCN), for spatial density prediction. Moreover, we employ a domain discriminator, in which adversarial learning is adopted to align the less-annotated target domain features with the well-annotated source domain features in the feature space. We further propose a novel training strategy for the adversarial learning by coupling data from source and target domains and alternating the subnet updates. We employ the public CBIS-DDSM dataset as the source domain, and perform two sets of experiments on two target domains (i.e., the public INbreast dataset and a self-collected dataset), respectively. Experimental results suggest consistent and comparable performance improvement over the state-of-the-art methods. Our proposed training strategy is also proved to converge much faster. (C) 2020 Elsevier B.V. All rights reserved.
机译:未经深入学习培训,未经适当的注释,已收集许多医学图像数据集。在本文中,我们提出了一种具有对抗性学习的新型无监督域适应框架,以最大限度地减少注释努力。我们的框架采用任务特定网络,即全卷积网络(FCN),用于空间密度预测。此外,我们采用域鉴别器,其中采用了对抗的学习来对齐较少注释的目标域特征,其中包含特征空间中的良好注释的源域功能。我们进一步提出了一种通过耦合来自源域和目标域的数据和交替的子网更新来对抗对抗的培训策略。我们将公共CBI-DDSM数据集用作源域,并分别在两个目标域(即,公共BoneBrest DataSet和自收集数据集)上执行两组实验。实验结果表明,通过最先进的方法提出了一致的性能改善。我们拟议的培训策略也被证明会收敛得多。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第14期|27-37|共11页
  • 作者单位

    Huazhong Univ Sci & Technol China Key Lab Informat Storage Syst Wuhan Natl Lab Optoelect Sch Comp Sci & Technol Wuhan Peoples R China|Tencent Inc Technol & Engn Grp Healthcare Shenzhen Peoples R China;

    Tencent Inc Technol & Engn Grp Healthcare Shenzhen Peoples R China;

    Tencent Inc Technol & Engn Grp Healthcare Shenzhen Peoples R China;

    Tencent Inc Technol & Engn Grp Healthcare Shenzhen Peoples R China;

    Tencent Inc Technol & Engn Grp Healthcare Shenzhen Peoples R China;

    Huazhong Univ Sci & Technol China Key Lab Informat Storage Syst Wuhan Natl Lab Optoelect Sch Comp Sci & Technol Wuhan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mammography; Mass detection; Domain adaptation; Adversarial learning;

    机译:乳房X线照相术;质量检测;领域适应;对抗学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号