首页> 外文期刊>Neurocomputing >Domain-invariant representation learning using an unsupervised domain adversarial adaptation deep neural network
【24h】

Domain-invariant representation learning using an unsupervised domain adversarial adaptation deep neural network

机译:域名不变的表示学习使用无监督的域对抗性适应深神经网络

获取原文
获取原文并翻译 | 示例

摘要

Domain adaptation is proposed to improve the recognition performance of the domain shift or the dataset bias. The domain shift is a very common problem, which is caused by diverse factors, such as data capturing angles, illumination, and image quality existing in the natural scene image understanding. Since the domain shift leads to the feature distribution discrepancy, some solutions have been proposed to alleviate the distribution discrepancy by mapping feature spaces between source and target domains, so as to ensure the transferable features can be learned by the deep networks during the end-to-end training for the classification tasks. However, it is still a big challenge to address the domain shift when the distribution spaces are not clearly separated. Inspired by the adversarial idea, we propose a novel unified deep neural network architecture named the unsupervised domain adversarial adaptation deep neural network. It addresses the domain adaptation problem by learning domain-invariant features through mitigating the feature discriminative ability in the domain classification task alternatively by alleviating the feature distribution discrepancy in the main classification task. Therefore, in our proposed unified deep network, we integrate two main modules. One is an auxiliary task module for the domain classifier, which is trained to make sure the learned features are domain-invariant under the adversarial optimization strategy by minimizing the domain discriminative ability. The other is the module at task-specific layers to enhance the learning of the transferable features with the less distribution discrepancy by adding multiple maximum mean discrepancy constraints to map the features to reproducing kernel Hilbert spaces. The experimental results show that the features learned by our proposed unified deep neural network perform better than the features learned by previous cross-domain neural networks on classification tasks. Our proposed approach achieves the state-of-the-art performance on three cross-domain datasets: Office-31 (different capturing angles, illumination, and image quality), Office-Caltech (modified from Office-31) and a combined cross-domain digit dataset, including MNIST, USPS and SVHN (different style digits in each dataset). (C) 2019 Elsevier B.V. All rights reserved.
机译:建议提高域的适应以提高域移位或数据集偏置的识别性能。域移位是一个非常常见的问题,这是由不同的因素引起的,例如数据捕获角度,照明和在自然场景图像理解中存在的图像质量。由于域移位导致特征分布差异,因此已经提出了一些解决方案来通过施加源极和目标域之间的特征空间来缓解分布差异,以确保在最终的深度网络可以通过深网络学习可转移功能 - 为分类任务培训。但是,当分销空间没有明确分开时,解决域名差距仍然是一个很大的挑战。受到对手的主意的启发,我们提出了一种名为无监督域对抗性适应深神经网络的小说统一深度神经网络建筑。通过减轻域分类任务中的特征鉴别能力,通过减轻主分类任务中的特征分布差异来解决域中的特征来解决域适应问题。因此,在我们提出的统一深度网络中,我们整合了两个主要模块。一个是域分类器的辅助任务模块,其训练,以确保学习的功能通过最小化域辨别能力,以确保在对冲优化策略下是域不变的。另一个是任务特定层的模块,以增强可转移功能的学习,通过添加多个最大平均差异约束来映射到再现内核希尔伯特空间的功能的多个最大平均差异差异。实验结果表明,我们提出的统一深度神经网络学到的特征比以前跨域神经网络在分类任务上学到的特征更好。我们所提出的方法实现了三个跨域数据集的最先进的性能:Office-31(不同的捕获角度,照明和图像质量),办公室 - 卡特赫(从Office-31修改)和组合的交叉域数字数据集,包括Mnist,USPS和SVHN(每个数据集中的不同样式数字)。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第25期|209-220|共12页
  • 作者单位

    Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China|Beijing Univ Technol Fac Informat Technol Beijing Municipal Key Lab Multimedia & Intelligen Beijing Peoples R China;

    Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China;

    Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China;

    Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China|Beijing Univ Technol Fac Informat Technol Beijing Municipal Key Lab Multimedia & Intelligen Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Domain adaptation; Feature distribution discrepancy; Domain-invariant feature; Unsupervised adversarial network; Unified deep neural network;

    机译:域适应;特征分布差异;域不变的功能;无监督的对抗网络;统一的深度神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号