首页> 外文期刊>Neurocomputing >A modified Lanczos Algorithm for fast regularization of extreme learning machines
【24h】

A modified Lanczos Algorithm for fast regularization of extreme learning machines

机译:一种改进的LanczoS算法,用于快速正规化的极端学习机

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new regularization for Extreme Learning Machines (ELMs). ELMs are Randomized Neural Networks (RNNs) that are known for their fast training speed and good accuracy. Nevertheless the complexity of ELMs has to be selected, and regularization has to be performed in order to avoid under-fitting or overfitting. Therefore, a novel Regularization is proposed using a modified Lanczos Algorithm: Iterative Lanczos Extreme Learning Machine (Lan-ELM). As summarized in the experimental Section, the computational time is on average divided by 4 and the Normalized MSE is on average reduced by 11%. In addition, the proposed method can be intuitively parallelized, which makes it a very valuable tool to analyze huge data sets in real-time. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文为极端学习机(ELM)提供了新的正则化。 ELMS是随机的神经网络(RNNS),以其快速的训练速度而闻名,精度良好。然而,必须选择榆树的复杂性,并且必须进行正则化以避免底层或过度装备。因此,使用改进的Lanczos算法提出了一种新的正则化:迭代Lanczos极限学习机(LAN-ELM)。如实验部分的总结,计算时间平均除以4,归一化的MSE平均降低11%。此外,所提出的方法可以直观地并行化,这使其成为一种非常有价值的工具,可以实时分析巨大的数据集。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号