首页> 中文期刊> 《软件导刊》 >一种基于遗传算法的极限学习机改进算法研究

一种基于遗传算法的极限学习机改进算法研究

     

摘要

针对传统极限学习机(ELM)缺乏有效的训练方法、应用时预测精度不理想这一弱点,提出了一种基于遗传算法(GA)训练极限学习机(GA-ELM)的方法.在该方法中,ELM的输入权值和隐藏层节点阈值映射为GA的染色体向量,GA的适应度函数对应ELM的训练误差;通过GA的遗传操作训练ELM,选出使ELM网络误差最小的输入权值和阈值,从而改善ELM的泛化性能.通过与ELM、I-ELM、OS-ELM、B-ELM4种方法的仿真结果对比,表明遗传算法有效地改善了ELM网络的预测精度和泛化能力.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号