首页> 外文期刊>Neurocomputing >Multi-attention guided feature fusion network for salient object detection
【24h】

Multi-attention guided feature fusion network for salient object detection

机译:用于突出对象检测的多关注引导特征融合网络

获取原文
获取原文并翻译 | 示例

摘要

Though with the rapid development of deep learning, salient object detection methods have achieved increasingly better performance, how to get effective feature representation to predict more accurate sal-iency maps is still a burning problem we need to consider. To overcome this situation, most previous works tend to focus on skip-based architecture to integrate hierarchical information of different scales and layers. However, a simple concatenation of high-level features and low-level features is not all-powerful because cluttered and noisy information can cause negative consequences. Concerning the issue mentioned above, we propose a Multi-Attention guided Feature-fusion network (MAF) which can allevi-ate the problem from two aspects. For one thing, we use a novel Channel-wise Attention Block (CAB) to in charge of message passing layer by layer from a global view, which utilizes the semantic cues in the higher convolutional block to instruct the feature selection in the lower block. For another, a Position Attention Block (PAB) also works on integrated features to model pixel relationships and capture rich contextual dependencies. Under the guidance of multi-attention, discriminative features are selected to conduct a new end-to-end densely supervised encoder-decoder network which detects salient objects more uniformly and precisely. As the experimental results on five benchmark datasets show, our meth-ods perform favorably against other state-of-the-art approaches. (c) 2020 Elsevier B.V. All rights reserved.
机译:虽然随着深度学习的快速发展,突出的物体检测方法已经取得了越来越好的性能,如何获得有效的特征表示来预测更准确的Sal-ience映射仍然是我们需要考虑的燃烧问题。为了克服这种情况,大多数以前的作品倾向于专注于跳过的架构,以集成不同尺度和层的分层信息。但是,高级功能和低级功能的简单串联不是全功能,因为混乱和嘈杂的信息可能会导致负面后果。关于上面提到的问题,我们提出了一种多关注引导特征融合网络(MAF),它可以通过两个方面进行Allevi-Ate问题。对于一件事,我们通过从全局视图中的层来使用新的通道 - 方面注意块(CAB)来密切地通过层来通过层,它利用较高卷积块中的语义线索来指示下块中的特征选择。对于另一个,位置注意力块(PAB)也适用于集成功能以模拟像素关系并捕获丰富的上下文依赖项。在多关注的指导下,选择辨别特征来开展新的端到端密集监督的编码器 - 解码器网络,该编码器 - 解码器更均匀地均匀地检测突出物体。随着五个基准数据集显示的实验结果,我们的Meth-ods对其他最先进的方法有利地表现出色。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第21期|416-427|共12页
  • 作者

    Li Anni; Qi JinQing; Lu Huchuan;

  • 作者单位

    Dalian Univ Technol Sch Informat & Commun Engn Dalian 116024 Peoples R China;

    Dalian Univ Technol Sch Informat & Commun Engn Dalian 116024 Peoples R China;

    Dalian Univ Technol Sch Informat & Commun Engn Dalian 116024 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Salient object detection; Feature fusion; Channel-wise attention; Position attention;

    机译:突出物体检测;特征融合;频道 - 明智的关注;立场注意;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号