首页> 外文期刊>Neurocomputing >Attentive and ensemble 3D dual path networks for pulmonary nodules classification
【24h】

Attentive and ensemble 3D dual path networks for pulmonary nodules classification

机译:用于肺结结分类的细心和集合3D双路径

获取原文
获取原文并翻译 | 示例

摘要

Automated pulmonary nodules classification aims at predicting whether a candidate nodule is benign or malignant. It is of great significance for computer-aided diagnosis of lung cancer. Despite the substantial progress achieved by existing methods, several challenges remain, including the lack of fine-grained representations, the interpretability of the reasoning procedure, and the trade-off between true-positive rate and false-positive rate. To tackle these challenges, in this work, we present a novel pulmonary nodule classification framework via attentive and ensemble 3D Dual Path Networks. Specially, we first devise a contextual attention mechanism to model the contextual correlations among adjacent locations, which improves the representativeness of deep features. Second, we employ a spatial attention mechanism to automatically locate the regions essential for nodule classification. Finally, we employ an ensemble of several models to improve the prediction robustness. Extensive experiments are conducted on the LIDC-IDRI database. Results demonstrate the effectiveness of the proposed techniques and the superiority of our model over previous state-of-the-art. (C) 2019 Elsevier B.V. All rights reserved.Y
机译:自动肺结结分类旨在预测候选结节是否是良性或恶性的。对肺癌的计算机辅助诊断具有重要意义。尽管现有方法取得了实质性进展,但仍然存在若干挑战,包括缺乏细粒度的陈述,推理程序的可解释性,以及真正阳性率和假阳性率之间的权衡。为了解决这些挑战,在这项工作中,我们通过细心和集合3D双路网络提出了一种新的肺结核分类框架。特别是,我们首先设计了一种语境关注机制来模拟相邻位置之间的上下文相关性,这提高了深度特征的代表性。其次,我们采用空间注意机制来自动定位对结节分类所必需的区域。最后,我们采用了几种模型的集合来改善预测稳健性。在LIDC-IDRI数据库上进行了广泛的实验。结果展示了拟议技术的有效性以及我们模型在以前的最先进的情况下的优势。 (c)2019 Elsevier B.v.保留所有权利.Y

著录项

  • 来源
    《Neurocomputing》 |2020年第jul20期|422-430|共9页
  • 作者单位

    Zhejiang Univ Sir Run Run Shaw Hosp Sch Med Pulm & Crit Care Med Hangzhou 310020 Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Peoples R China|Xidian Univ Sch Elect Engn State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dual path network; Pulmonary nodule classification; Computer-Aided diagnoses; Attention; Lung cancer;

    机译:双路网络;肺结核分类;计算机辅助诊断;注意;肺癌;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号