首页> 外文期刊>Neurocomputing >Building interactive sentence-aware representation based on generative language model for community question answering
【24h】

Building interactive sentence-aware representation based on generative language model for community question answering

机译:基于生成语言模型的社区问题应答的互动句子感知表示

获取原文
获取原文并翻译 | 示例

摘要

Semantic matching between question and answer sentences involves recognizing whether a candidate answer is relevant to a particular input question. Given the fact that such matching does not examine a question or an answer individually, context information outside the sentence should be considered equally important to the within-sentence syntactic context. This motivates us to design a new question-answer matching model, built upon a cross-sentence, context-aware, bi-directional long short-term memory architecture. The interactive attention mechanisms are proposed which automatically select salient positional sentence representations, that contribute more significantly towards the relevance between two question and answer. A new quantity called context information jump is proposed to facilitate the formulation of the attention weights, and is computed via the joint states of adjacent words. An interactive-aware sentence representation is constructed by connecting a combination of multiple sentence positional representations to each hidden representation state. In the experiments, the proposed method is compared with existed models, using four public community datasets, and the evaluations show that it is very competitive. In particular, it offers 0.32%-1.8% improvement over the best performing model for three out of four datasets, while for the remaining one performance is around 0.2% of the best performer. (C) 2020 Elsevier B.V. All rights reserved.
机译:问题和回答句子之间的语义匹配涉及识别候选答案是否与特定输入问题相关。鉴于这种匹配不单独检查问题或答案,句子之外的上下文信息应该被视为对句子语法上下文同样重要的。这激励我们设计一个新的问题答案匹配模型,基于跨句,上下文感知,双向长期短期内存架构。建议互动注意力机制自动选择突出的位置句子表示,这更有贡献了两个问题与答案之间的相关性。提出了一种称为上下文信息跳跃的新量,以便于制定注意力,并且通过相邻词的联合状态计算。通过将多句位置表示的组合连接到每个隐藏的表示状态,构建交互式感知句子表示。在实验中,使用四个公共社区数据集将所提出的方法与存在的模型进行比较,评估表明它是非常有竞争力的。特别是,在四个数据集中的三个中,它提供了0.32%-1.8%的改进,为三个数据集中的三个出现,而剩下的一个性能约为最佳表演者的0.2%。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号