首页> 外文期刊>Neurocomputing >Hybrid methodology based on Bayesian optimization and GA-PARSIMONY to search for parsimony models by combining hyperparameter optimization and feature selection
【24h】

Hybrid methodology based on Bayesian optimization and GA-PARSIMONY to search for parsimony models by combining hyperparameter optimization and feature selection

机译:基于贝叶斯优化和GA-Parsimony的混合方法通过组合HyperParameter优化和特征选择来搜索定义模型

获取原文
获取原文并翻译 | 示例

摘要

This article presents a hybrid methodology that combines Bayesian optimization (BO) with a constrained version of the GA-PARSIMONY method to obtain parsimony models. The proposal is designed to reduce the sizeable computational effort associated with the use of GA-PARSIMONY alone. The method begins with BO to obtain favorable initial model parameters. Then, with these parameters, a constrained GA-PARSIMONY is implemented to generate accurate parsimony models by using feature reduction, data transformation and parsimonious model selection. Experiments with extreme gradient boosting machines (XGBoost) and ten UCI databases demonstrated that the hybrid methodology obtains models analogous to those of GA-PARSIMONY while achieving significant reductions in elapsed time in eight out of ten datasets. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了一种混合方法,将贝叶斯优化(BO)与GA-Parsimony方法的约束版本结合起来,以获得分析模型。该提案旨在减少与使用GA-Parsimony相关的相当大的计算工作。该方法始于Bo以获得有利的初始模型参数。然后,利用这些参数,实现约束的GA-Parsimony来通过使用特征减少,数据转换和解析模型选择来生成准确的分析模型。具有极端梯度升压机(XGBoost)和十个UCI数据库的实验表明,混合方法获得了类似于GA-Parsimony的模型,同时在十个数据集中的八个中实现了八个时间的显着减少。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号