首页> 外文期刊>Neurocomputing >Pth moment exponential input-to-state stability of non-autonomous delayed Cohen-Grossberg neural networks with Markovian switching
【24h】

Pth moment exponential input-to-state stability of non-autonomous delayed Cohen-Grossberg neural networks with Markovian switching

机译:PTH矩指数输入与马尔可夫交换非自主延迟Cohen-Grossberg神经网络的稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper is corned with the pth moment exponential input-to-state stability for non-autonomous delayed Cohen-Grossberg neural networks with Markovian switching. By the generalized Ito's formula and some analysis technique on time-varying coefficients, a vector non-autonomous Halanay inequality is established. With the aid of the novel Halanay inequality, sufficient criteria on pth moment exponential input-to-state stability for non-autonomous delayed Cohen-Grossberg neural networks with Markovian switching is derived. A numerical example is provided to demonstrate feasibility and validity. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文以与马尔可夫交换的非自主延迟Cohen-Grossberg神经网络的Pth Mondy指数输入到状态稳定性。通过广泛的ITO的公式和一些分析技术在时变系数上,建立了载体非自治卤化卤素不等式。借助于新型Halanay不等式,推导出具有Marvovian切换的非自主延迟Cohen-Grossberg神经网络的Pth Mondy指数输入到状态稳定性的充分标准。提供了一个数字示例以证明可行性和有效性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号